Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-14T11:27:47.208Z Has data issue: false hasContentIssue false

Ordered and twinned multidomain structure in highly Al-rich mullite

Published online by Cambridge University Press:  31 January 2011

H.Z. Wang
Affiliation:
Department of Manufacturing Engineering, College of Engineering, Boston University, Brookline, Massachusetts 02446
T. Kulkarni
Affiliation:
Department of Manufacturing Engineering, College of Engineering, Boston University, Brookline, Massachusetts 02446
V.K. Sarin
Affiliation:
Department of Manufacturing Engineering, College of Engineering, Boston University, Brookline, Massachusetts 02446
S.N. Basu*
Affiliation:
Department of Manufacturing Engineering, College of Engineering, Boston University, Brookline, Massachusetts 02446
*
a)Address all correspondence to this author. e-mail: basu@bu.edu
Get access

Abstract

The structure of a region of a highly Al-rich mullite (Al4+2xSi2–2xO10–x with x ∼ 0.82; 47Al2O3-6SiO2; Al/Si ∼16) in a chemically vapor-deposited, functionally graded mullite coating was studied by high-resolution transmission electron microscopy. The region consisted of a fully ordered and twinned multidomain structure. Within each domain, well-ordered oxygen vacancies resulted in antiphase boundaries (APBs) characterized by a shift vector of [001]. The APBs were oriented parallel to (601) and (601). Along [001], the structure consisted of alternating layers of (601)- and (601)-domains with a spacing of 17d601, separated by (001) twinning planes. The (001) twinning did not generate any additional spots in the [010] mullite diffraction pattern. The lattice parameters of this ultrahigh Al-rich mullite phase were calculated from selected-area electron-diffraction patterns to be: a = 0.762 nm; b = 0.754 nm; and c = 0.291 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jacobson, N.S.: Corrosion of silicon-based ceramics in combustion environments. J. Am. Ceram. Soc. 76(1), 3 1993CrossRefGoogle Scholar
2Robinson, R.C.Smialek, J.L.: SiC recession caused by SiO2 scale volatility under combustion conditions: I. Experimental results and empirical model. J. Am. Ceram. Soc. 82, 1817 1999CrossRefGoogle Scholar
3Krishnamurthy, R., Sheldon, B.W.Haynes, J.A.: Stability of mullite protective coatings for silicon-based ceramics. J. Am. Ceram. Soc. 88(5), 1099 2005CrossRefGoogle Scholar
4Zemskova, S.M., Jones, C.Y., Cooley, K.M.Haynes, J.A.: Optimization of chemical vapor deposition parameters for fabrication of oxidation-resistant mullite coatings on silicon nitride. J. Am. Ceram. Soc. 87(12), 2201 2004CrossRefGoogle Scholar
5Doppalapudi, D.Basu, S.N.: Structure of mullite coatings grown by chemical vapor deposition. Mater. Sci. Eng., A 231, 48 1997CrossRefGoogle Scholar
6Hou, P., Basu, S.N.Sarin, V.K.: Nucleation mechanism in chemical vapor deposited mullite coatings on SiC. J. Mater. Res. 14(7), 2952 1999CrossRefGoogle Scholar
7Basu, S.N., Kulkarni, T., Wang, H.Z.Sarin, V.K.: Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J. Eur. Ceram. Soc. 2007 (in press)Google Scholar
8Cameron, W.E.: Exsolution in “stoichiometric” mullite. Nature 264(23/30), 736 1976CrossRefGoogle Scholar
9Fischer, R.X., Schneider, H.Schmücker, M.: Crystal structure of Al-rich mullite. Am. Mineral. 79, 983 1994Google Scholar
10Fischer, R.X., Schneider, H.Voll, A.D.: Formation of aluminum rich 9:1 mullite and its transformation to low alumina mullite upon heating. J. Eur. Ceram. Soc. 16, 109 1996CrossRefGoogle Scholar
11Epicier, T., O’Keefe, M.A.Thomas, G.: Atomic imaging of 3:2 mullite. Acta Crystallogr., Sect. A 46, 948 1990CrossRefGoogle Scholar
12Epicier, T.: Benefits of high-resolution electron microscopy for the structural characterization of mullite. J. Am. Ceram. Soc. 74(10), 2359 1991CrossRefGoogle Scholar
13Schryvers, D., Srikrishna, K., O’Keefe, M.A.Thomas, G.: An electron microscopy study of the atomic structure of a mullite in a reaction-sintered composite. J. Mater. Res. 3, 1355 1988CrossRefGoogle Scholar
14Rahman, S.H.Weichert, H-T.: Interpretation of HREM images of mullite. Acta Crystallogr., Sect. B 46, 139 1990CrossRefGoogle Scholar
15Paulmann, C., Rahman, S.H.Strothenk, S.: Interpretation of mullite HREM images along [010] and. Phys. Chem. Miner. 21, 546 1994. 100CrossRefGoogle Scholar
16Smith, D.G.W.: The chemistry and mineralogy of some emery-like rocks from Sithean Sluaigh, Strachur. Argyllshire. Am. Mineral. 50, 1982 1965Google Scholar
17Nakajima, Y., Morimoto, N.Watanabe, E.: Direct observation of oxygen vacancy in mullite. Proc. Jpn. Acad. 51, 173 1975CrossRefGoogle Scholar
18Cameron, W.E.: Composition and cell dimensions of mullite. Ceram. Bull. 56, 1003 1977Google Scholar
19Ylä-Jääski, J.Nissen, H-U.: Investigation of superstructures in mullite by high resolution electron microscopy and electron diffraction. Phys. Chem. Miner. 10, 47 1983CrossRefGoogle Scholar
20Nakajima, Y.Ribbe, P.H.: Twinning and superstructure of Al-rich mullite. Am. Mineral. 66, 142 1981Google Scholar
21Burnham, C.W.: Composition limits of mullite, and the sillimanite-mullite solid solution problem. Carnegie Inst. Washington Year Book 63, 227 1964Google Scholar
22Rahman, S.H., Strothenk, S., Paulmann, C.Feustel, U.: Interpretation of mullite real structure via inter-vacancy correction vectors. J. Eur. Ceram. Soc. 16, 177 1996CrossRefGoogle Scholar
23Schneider, H.Komarneni, S.: Mullite WILEY-VCH Verlag GmbH & Co. KGaA Weinheim, Germany 2005 61CrossRefGoogle Scholar
24Aksay, I.A., Dabbs, D.M.Sarikaya, M.: Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 74(10), 2343 1991CrossRefGoogle Scholar
25Mulpuri, R.P.Sarin, V.K.: Synthesis of mullite coatings by chemical vapor deposition. J. Mater. Res. 11(6), 1315 1996CrossRefGoogle Scholar
26Basu, S.N., Hou, P.Sarin, V.K.: Formation of mullite coatings on silicon-based ceramics by chemical vapor deposition. J. Refract. Met. Hard Mater. 16, 3431 1998CrossRefGoogle Scholar
27Landuyt, J.V., Ridder, R.D., Gevers, R.Amelinckx, S.: Diffraction effects due to shear structures: A new method for determining the shear vector. Mater. Res. Bull. 5, 353 1970CrossRefGoogle Scholar
28Ridder, R.D., Landuyt, J.V.Amelinckx, S.: Diffraction effects associated with shear structures and related structures. Phys. Status Solidi A 9, 551 1972CrossRefGoogle Scholar
29Ylä-Jääski, J.: Investigation of superstructures in mullite by high resolution electron microscopy and electron diffraction. PhD. Thesis, Swiss Federal Institute of Technology Zurich, Switzerland,1983CrossRefGoogle Scholar
30Sadanaga, R., Tokonami, M.Takeuchi, Y.: The structure of mullite 2Al2O3-SiO2, and relationship with the structures of sillimanite and andalusite. Acta Crystallogr. 15, 65 1962CrossRefGoogle Scholar
31Edington, J.W.: Practical Electron Microscopy in Material Science The MacMillan Press Ltd. London 1975Google Scholar
32Guo, K.X., Ye, H.Q.Wu, Y.K.: Application of Electron-Diffraction Patterns in Crystallography The Science Press of China Beijing January 1983Google Scholar
33Cameron, W.E.: Mullite: A substitute of alumina. Am. Mineral. 62, 747 1977Google Scholar
34Duvigneaud, P.H.: Existence of mullite without silica. J. Am. Ceram. Soc. 57, 224 1974CrossRefGoogle Scholar
35Schneider, H., Fischer, R.X.Voll, D.: Mullite with lattice constants a>b. J. Am. Ceram. Soc. 76(7), 1879 1993CrossRefGoogle Scholar
36Schneider, H.Rymon-Lipinski, T.: Occurrence of pseudotetragonal mullite. J. Am. Ceram. Soc. 71(3), C-162 1988CrossRefGoogle Scholar
37Agrell, S.O.Smith, J.V.: Cell dimensions, solid solution, polymorphism, and identification of mullite and sillimanite. J. Am. Ceram. Soc. 43(2), 69 1960CrossRefGoogle Scholar
38Ban, T.Okada, K.: Analysis of local cation arrangement in mullite using 29Si magic-angle spinning nuclear magnetic resonance spectra. J. Am. Ceram. Soc. 76(10), 2491 1993CrossRefGoogle Scholar
39Ossaka, J.: Tetragonal mullite-like phase from co-precipitated gels. Nature 4792(2), 1000 1961CrossRefGoogle Scholar