Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T22:21:47.925Z Has data issue: false hasContentIssue false

Orientation dependence of Portevin–Le Châtelier plastic instabilities in depth-sensing microindentation

Published online by Cambridge University Press:  31 January 2011

Zs. Kovács
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1518, P.O.B. 32, Budapest, Hungary
N. Q. Chinh
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1518, P.O.B. 32, Budapest, Hungary
J. Lendvai
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1518, P.O.B. 32, Budapest, Hungary
Get access

Abstract

Plastic instabilities were investigated in an Al–Zn–Mg–Cu alloy by depth-sensing microhardness testing in Vickers geometry. The alloy investigated showed strong age hardening as a consequence of Guiner–Preston zone formation at room temperature. The orientation dependence of the Portevin–Le Chátelier (PLC) effect was investigated by microindentation tests in differently oriented grains. If the direction of the indentation was close to the 〈100〉 crystal axis and the diagonal of the Vickers indenter coincides with the 〈110〉 crystal direction, the PLC effect was more pronounced. Under these conditions the instabilities could be observed even after 5 h of natural aging, while the PLC effect disappeared in grains with other orientations after 2 h of aging. The orientation dependence of the indentation curves was observed up to the maximal measured imprint size (d ≈ 80 μm). It is suggested that the initialization of the PLC bands takes place in the close vicinity of indenter/sample contact surface. Considering only a uniaxial compressive stress component in the sample/indenter contact planes, in the vicinity of the indenter single sliplike and multiple sliplike conditions are attained depending on the orientation of the indenter relative to the sample. Changes of the slip conditions correlate with changes in the observation regime of instability which explains the orientation dependence.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Penning, P., Acta Metall. 20, 1169 (1972).CrossRefGoogle Scholar
2.Hähner, P., Mater. Sci. Eng. A 207, 208 (1996).CrossRefGoogle Scholar
3.Hähner, P., Mater. Sci. Eng. A 207, 216 (1996).CrossRefGoogle Scholar
4.Kubin, L.P., Chihab, K., and Estrin, Y., Acta Metall. 36, 2707 (1988).CrossRefGoogle Scholar
5.Bérces, G., Chinh, N.Q., Juhász, A., and Lendvai, J., J. Mater. Res. 13, 1411 (1998).CrossRefGoogle Scholar
6.Bérces, G., Chinh, N.Q., Juhász, A., and Lendvai, J., Acta Mater. 46, 2029 (1998).CrossRefGoogle Scholar
7.Thevenet, D., Mliha-Touati, M., and Zeghloul, A., Mater. Sci. Eng. A 266, 175 (1999).CrossRefGoogle Scholar
8.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
9.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Acta Metall. Mater. 42, 475 (1994).CrossRefGoogle Scholar
10.Poole, W.J., Ashby, M.F., and Fleck, N.A., Scr. Mater. 34, 559 (1996).CrossRefGoogle Scholar
11.Aifantis, E.C., J. Eng. Mater. Technol. 106, 326 (1984).CrossRefGoogle Scholar
12.Iost, A. and Bigot, R., J. Mater. Sci. 31, 3573 (1996).CrossRefGoogle Scholar
13.Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Yu.V., Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
14.Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W.W., Phys. Rev. B 55, R16057 (1997).CrossRefGoogle Scholar
15.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L., Acta Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
16.Robertson, C.F. and Fivel, M.C., J. Mater. Res. 14, 2251 (1999).CrossRefGoogle Scholar
17.Elban, W.L. and Armstrong, R.W., Acta Mater. 46, 6041 (1998).CrossRefGoogle Scholar
18.Chinh, N.Q., Horváth, Gy., Kovács, Zs., and Lendvai, J., Mater. Sci. Eng. (2000, in press).Google Scholar
19.Bréchet, Y. and Estrin, Y., Scr. Metall. Mater. 31, 185 (1994).CrossRefGoogle Scholar
20.Bréchet, Y. and Estrin, Y., Acta Metall. Mater. 43, 955 (1995).CrossRefGoogle Scholar
21.Lukáč, P., Balík, J., and Chmelík, F., Mater. Sci. Eng. A 234–236, 45 (1997).CrossRefGoogle Scholar
22.Chang, S.C. and Chen, H.C., Acta Metall. Mater. 43, 2501 (1995).CrossRefGoogle Scholar
23.Tassy-Betz, é. and Prohászka, J., Metallography 7, 91 (1974).CrossRefGoogle Scholar
24.Pharr, G.M., Mater. Sci. Eng. A 253, 151 (1998).CrossRefGoogle Scholar
25.Bolshakov, A., Oliver, W.C., and Pharr, G.M., J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
26.Giannakopoulos, A.E., Larsson, P.L., and Vestergaard, R., Int. J. Solids Struct. 31, 2679 (1994).CrossRefGoogle Scholar
27.Bobji, M.S. and Biswas, S.K., Proceedings of the International Conference on Recent Advances in Metallurgical Processes, (New Age International Publishers, New Delhi, 1997), p. 1223.Google Scholar
28.Kalk, A., Nortmann, A., and Schwink, Ch., Philos. Mag. A 72, 1239 (1995).CrossRefGoogle Scholar
29.McCormick, P.G., Acta Metall. 30, 2079 (1982).CrossRefGoogle Scholar
30.Ling, C.P., McCormick, P.G., and Estrin, Y., Acta Metall. Mater. 41, 3323 (1993).CrossRefGoogle Scholar
31.Kiely, J.D., Jarausch, K.F., Houston, J.E., and Russell, P.E., J. Mater. Res. 14, 2219 (1999).CrossRefGoogle Scholar
32.Tadmor, E.B., Miller, R., Phillips, R., and Ortiz, M., J. Mater. Res. 14, 2233 (1999).CrossRefGoogle Scholar