Skip to main content Accessibility help

Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip

  • Claudio Zambaldi (a1), Yiyi Yang (a2), Thomas R. Bieler (a2) and Dierk Raabe (a3)


This study reports on the anisotropic indentation response of α-titanium. Coarse-grained titanium was characterized by electron backscatter diffraction. Sphero-conical nanoindentation was performed for a number of different crystallographic orientations. The grain size was much larger than the size of the indents to ensure quasi-single-crystal indentation. The hexagonal c-axis was determined to be the hardest direction. Surface topographies of several indents were measured by atomic force microscopy. Analysis of the indent surfaces, following Zambaldi and Raabe (Acta Mater. 58(9), 3516–3530), revealed the orientation-dependent pileup behavior of α-titanium during axisymmetric indentation. Corresponding crystal plasticity finite element (CPFE) simulations predicted the pileup patterns with good accuracy. The constitutive parameters of the CPFE model were identified by a nonlinear optimization procedure, and reproducibly converged toward easy activation of prismatic glide systems. The calculated critical resolved shear stresses were 150 ± 4, 349 ± 10, and 1107 ± 39 MPa for prismatic and basal 〈a〉-glide and pyramidal〈c + a〉-glide, respectively.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Zambaldi, C. and Raabe, D.: Plastic anisotropy of gamma-TiAl revealed by axisymmetric indentation. Acta Mater. 58, 3516 (2010).
2.Lütjering, G. and Williams, J.C.: Titanium (Engineering Materials and Processes) (Springer, Berlin, Germany, 2007).
3.Bieler, T.R., Trevino, R.M., and Zeng, L.: Alloys: Titanium, in Encyclopedia of Condensed Matter Physics (Elsevier, Oxford, 2005), pp. 6576.
4.Dunne, F.P.E., Walker, A., and Rugg, D.: A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc. R. Soc. London, Sect. A 463, 1467 (2007).
5.Wu, X., Kalidindi, S., Necker, C., and Salem, A.: Modeling anisotropic stress-strain response and crystallographic texture evolution in alpha-titanium during large plastic deformation using Taylor-type models: Influence of initial texture and purity. Metall. Mater. Trans. A 39, 3046 (2008).
6.Wang, L., Barabash, R., Yang, Y., Bieler, T., Crimp, M., Eisenlohr, P., Liu, W., and Ice, G.: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline alpha-Ti. Metall. Mater. Trans. A 42, 626 (2011).
7.Hutchinson, W. and Barnett, M.: Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 63, 737 (2010).
8.Ungár, T., Ribárik, G., Balogh, L., Salem, A.A., Semiatin, S.L., and Vaughan, G.B.: Burgers vector population, dislocation types and dislocation densities in single grains extracted from a polycrystalline commercial-purity Ti specimen by X-ray line-profile analysis. Scr. Mater. 63, 69 (2010).
9.Bettles, C.J., Lynch, P.A., Stevenson, A.W., Tomus, D., Gibson, M.A., Wallwork, K., and Kimpton, J.: In situ observation of strain evolution in CP-Ti over multiple length scales. Metall. Mater. Trans. A 42, 100 (2010).
10.Bieler, T.R., Nicolaou, P.D., and Semiatin, S.L.: An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V. Metall. Mater. Trans. A 36, 129 (2005).
11.Britton, T.B., Birosca, S., Preuss, M., and Wilkinson, A.J.: Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy. Scr. Mater. 62, 639 (2010).
12.Yang, Y., Wang, L., Bieler, T., Eisenlohr, P., and Crimp, M.A.: Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium. Metall. Mater. Trans. A 42, 636 (2011).
13.Bieler, T., Eisenlohr, P., Roters, F., Kumar, D., Mason, D., Crimp, M., and Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).
14.Zaefferer, S.: A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture. Mater. Sci. Eng., A 344, 20 (2003).
15.Franciosi, P. and Zaoui, A.: Multislip in f.c.c. crystals a theoretical approach compared with experimental data. Acta Metall. 30, 1627 (1982).
16.Franciosi, P.: The concepts of latent hardening and strain-hardening in metallic single-crystals. Acta Metall. 33, 1601 (1985).
17.Churchman, A.T.: The slip modes of titanium and the effect of purity on their occurrence during tensile deformation of single crystals. Proc. R. Soc. London, Ser. A 226, 216, (1954).
18.Paton, N.E. and Backofen, W.A.: Plastic deformation of titanium at elevated temperatures. Metall. Trans. B 1, 2839 (1970).
19.Sakai, T. and Fine, M.E.: Plastic-deformation of Ti-Al single-crystals in prismatic slip. Acta Metall. 22, 1359 (1974).
20.Akhtar, A.: Basal slip and twinning in alpha-titanium single-crystals. Metall. Trans. A 6, 1105 (1975).
21.Biget, M.P. and Saada, G.: Low-temperature plasticity of high-purity alpha-titanium single-crystals. Philos. Mag. A 59, 747 (1989).
22.Williams, J.C., Baggerly, R.G., and Paton, N.E.: Deformation behavior of HCPTi-Al alloy single crystals. Metall. Mater. Trans. A 33, 837 (2002).
23.Raabe, D., Ma, D., and Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55, 4567 (2007).
24.Wang, L., Eisenlohr, P., Yang, Y., Bieler, T., and Crimp, M.: Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 63, 827 (2010).
25.Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., and Tome, C.N.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 4073 (2010).
26.Roters, F.: Application of crystal plasticity fem from single crystal to bulk polycrystal. Comput. Mater. Sci. 32, 509 (2005).
27.Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D.: Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications. Acta Mater. 58, 1152 (2010).
28.Kalidindi, S.R., Bronkhorst, C.A., and Anand, L.: Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids 40, 537 (1992).
29.Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1 (1969).
30.Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London, Ser. A 348, 101 (1976).
31.Peirce, D., Asaro, R.J., and Needleman, A.: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31, 1951 (1983).
32.Asaro, R.J. and Needleman, A.: Overview 42. Texture development and strain-hardening in rate dependent polycrystals. Acta Metall. 33, 923 (1985).
33.Peirce, D., Asaro, R.J., and Needleman, A.: An analysis of nonuniform and localized deformation in ductile single-crystals. Acta Metall. 30, 1087 (1982).
34.M.S.C. Software: MARC2010, Volume D—User Subroutines and Special Routines. MSC.Software Corp. (2010).
35.Bhattacharya, A.K. and Nix, W.D.: Finite-element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).
36.Liu, Y., Wang, B., Yoshino, M., Roy, S., Lu, H., and Komanduri, R.: Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53, 2718 (2005).
37.Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA, 1971).
38.Nelder, J. and Mead, R.: A simplex method for function minimization. Comput. J. 7, 308 (1965).
39.Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes C++ (Cambridge University Press, Cambridge, U.K., 2007).
40.Grujicic, M. and Batchu, S.: A crystal plasticity materials constitutive model for polysynthetically-twinned gamma-TiAl+alpha(2)-Ti3Al single crystals. J. Mater. Sci. 36, 2851 (2001).
41.Gwyddion: Free AFM Data Analysis Software. (20042009).
42.Viswanathan, G., Lee, E., Maher, D.M., Banerjee, S., and Fraser, H.L.: Direct observations and analyses of dislocation substructures in the alpha-phase of an alpha/beta Ti-alloy formed by nanoindentation. Acta Mater. 53, 5101 (2005).
43.Merson, E., Brydson, R., and Brown, A.: The effect of crystallographic orientation on the mechanical properties of titanium. J. Phys Conf. Ser. 126, 1 (2008).
44.Lee, Y., Hahn, J., Nahm, S., Jang, J., and Kwon, D.: Investigations on indentation size effects using a pile-up corrected hardness. J. Phys. D: Appl. Phys. 41, 074027 (2008).
45.Tsuya, K.: Effect of temperature on hardness anisotropy of beryllium single crystals. J. Nucl. Mater. 22, 148 (1967).
46.Zambaldi, C.: Micromechanical Modeling of γ-TiAl Based Alloys, Dissertation RWTH Aachen (Shaker Verlag, Aachen, Germany, 2010),
47.Gaillard, Y., Macías, A.H., Muñoz-Saldaña, J., Anglada, M., and Trápaga, G.: Nanoindentation of BaTiO3: Dislocation nucleation and mechanical twinning. J. Phys. D 42, 085502 (2009).
48.Yu, Q., Shan, Z., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).
49.Liu, Y., Ma, S.V.J., Lu, M.Y.H., and Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24, 1990 (2008).
50.Bolzon, G., Maier, G., and Panico, M.: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957 (2004).
51.Bocciarelli, M., Bolzon, G., and Maier, G.: Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37, 855 (2005).
52.Yonezu, A., Kuwahara, Y., Yoneda, K., Hirakata, H., and Minoshima, K.: Estimation of the anisotropic plastic property using single spherical indentation—An FEM study. Comput. Mater. Sci. 47, 611 (2009).
53.Gong, J. and Wilkinson, A.J.: Anisotropy in the plastic flow properties of single-crystal α-titanium determined from micro-cantilever beams. Acta Mater. 57, 5693 (2009).
54.Demir, E., Raabe, D., Zaafarani, N., and Zaefferer, S.: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 57, 559 (2009).
55.Pharr, G., Herbert, E., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).


Related content

Powered by UNSILO

Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip

  • Claudio Zambaldi (a1), Yiyi Yang (a2), Thomas R. Bieler (a2) and Dierk Raabe (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.