Skip to main content Accessibility help
×
Home

Orientation relationships between coherent interfaces in hcp–fcc systems subjected to high strain-rate deformation and fracture modes

  • Shoayb Ziaei (a1), Qifeng Wu (a1) and Mohammed A. Zikry (a1)

Abstract

We investigated how coherent interfaces, between face centered cubic (fcc)/hexagonal close packed (hcp) systems, affect large strain deformation and fracture modes in hcp zircaloy aggregates with fcc hydrides. We derived 36 unique transformations related to coherent interfaces between fcc and hcp systems. We then used these orientation relations (ORs) with a dislocation-density crystalline plasticity formulation, a nonlinear finite-element, and a fracture approach that account for crack nucleation and propagation. We investigated how these ORs affect crack nucleation and propagation, dislocation density and inelastic slip evolution, stress accumulation, lattice rotation, and adiabatic heating. The predictions indicate that the physical representation of ORs affects local deformation and fracture behavior and are, therefore, essential for the accurate predictions of behavior at different physical scales in heterogeneous crystalline systems.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: zikry@ncsu.edu

References

Hide All
1. Lévesque, J., Inal, K., Neale, K.W., and Mishra, R.K.: Numerical modeling of formability of extruded magnesium alloy tubes. Int. J. Plast. 26(1), 65 (2010).
2. Graff, S., Brocks, W., and Steglich, D.: Yielding of magnesium: From single crystal to polycrystalline aggregates. Int. J. Plast. 23(12), 1957 (2007).
3. Inal, K. and Mishra, R.K.: Crystal plasticity based numerical modelling of large strain deformation inhexagonal closed packed metals. Procedia IUTAM 3, 239 (2012).
4. Lavrentev, F.F. and Pokhil, Y.A.: Relation of dislocation density in different slip systems to work hardening parameters for magnesium crystals. Mater. Sci. Eng. 18(2), 261 (1975).
5. Ziaei, S. and Zikry, M.A.: Modeling the effects of dislocation-density interaction, generation, and recovery on the behavior of H.C.P. materials. Metall. Mater. Trans. A 1 (2014).
6. Gey, N. and Humbert, M.: Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet. Acta Mater. 50(2), 277 (2002).
7. Suwas, S., Ray, R.K., Singh, A.K., and Bhargava, S.: Evolution of hot rolling textures in a two-phase (α2+β) Ti3Al base alloy. Acta Mater. 47(18), 4585 (1999).
8. Suwas, S. and Ray, R.K.: Effect of rolling on textures of primary and secondary α2 produced by thermomechanical processing of the intermetallic alloy Ti-24Al-11Nb. Scr. Mater. 44(2), 275 (2001).
9. Williams, ‎J.C. and Lutjering, G.: Titanium (Springer, Berlin, Germany, 2003).
10. Webster, R.T.: ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2 (ASM, Novelty, OH, 1990); p. 1328.
11. Schemel, J.H.: ASTM Manual on Zirconium and Hafnium (ASTM International, West Conshohocken, PA, 1977).
12. Sarkar, A., Boopathy, K., Eapen, J., and Murty, K.L.: Creep behavior of hydrogenated zirconium alloys. J. Mater. Eng. Perform. 23(10), 3649 (2014).
13. Murty, K.L. and Charit, I.: Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 48(4), 325 (2006).
14. Motta, A.T., Yilmazbayhan, A., Gomes da Silva, M.J., Comstock, R.J., Was, G.S., Busby, J.T., Gartner, E., Peng, Q., Jeong, Y.H., and Park, J.Y.: Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. J. Nucl. Mater. 371(1–3), 61 (2007).
15. Alam, A.M. and Hellwig, C.: Cladding tube deformation test for stress reorientation of hydrides. In Zirconium in the Nuclear Industry: 15th International Symposium, Vol. 1505, ASTM International, West Conshohocken, PA, 2009; p. 635.
16. Lemaignan, C. and Motta, A.T.: Zirconium Alloys in Nuclear Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
17. Kearns, J.J.: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4. J. Nucl. Mater. 22(3), 292 (1967).
18. Kearns, J.J.: Dissolution kinetics of hydride platelets in zircaloy-4. J. Nucl. Mater. 27(1), 64 (1968).
19. Qin, W., Kiran Kumar, N.A.P., Szpunar, J.A., and Kozinski, J.: Intergranular δ-hydride nucleation and orientation in zirconium alloys. Acta Mater. 59(18), 7010 (2011).
20. Puls, M.P.: The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals. Acta Metall. 29(12), 1961 (1981).
21. Puls, M.P.: Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall. 32(8), 1259 (1984).
22. Puls, M.P.: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393(2), 350 (2009).
23. Veleva, M., Arsene, S., Record, M., Bechade, J., and Bai, J.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part II. Morphology of hydrides investigated at different magnifications and their interaction with the processes of plastic deformation. Metall. Mater. Trans. A 34(3), 567 (2003).
24. Arsene, S., Bai, J.B., and Bompard, P.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34(3), 553 (2003).
25. Puls, M.: Fracture initiation at hydrides in zirconium. Metall. Trans. A 22(10), 2327 (1991).
26. Puls, M., Shi, S., and Rabier, J.: Experimental studies of mechanical properties of solid zirconium hydrides. J. Nucl. Mater. 336(1), 73 (2005).
27. Gu, X-F. and Zhang, W-Z.: A simple method for calculating the possible habit planes containing one set of dislocations and its applications to fcc/bct and hcp/bcc systems. Metall. Mater. Trans. A 45A(4), 1855 (2014).
28. Wang, Z., Garbe, U., Li, H., Studer, A.J., Harrison, R.P., Callaghan, M.D., Wang, Y., and Liao, X.: Hydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy. Scr. Mater. 67(9), 752 (2012).
29. Pilania, G., Thijsse, B.J., Hoagland, R.G., Lazic, I., Valone, S.M., and Liu, X.: Revisiting the Al/Al2O3 interface: Coherent interfaces and misfit accommodation. Sci. Rep. 4, 4485 (2014).
30. Porter, D.A., Easterling, K.E., and Sherif, M.: Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, FL, 2009); 520 pp.
31. Abdolvand, H., Daymond, M.R., and Mareau, C.: Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in zircaloy-2. Int. J. Plast. 27(11), 1721 (2011).
32. Zikry, M.A.: An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50(3), 337 (1994).
33. Wu, Q., Shanthraj, P., and Zikry, M.A.: Modeling the heterogeneous effects of retained austenite on the behavior of martensitic high strength steels. Int. J. Fract. 184(1–2), 241 (2013).
34. Asaro, R.J. and Rice, J.R.: Strain localization in ductile single-crystals. J. Mech. Phys. Solids 50, 337 (1977).
35. Franciosi, P., Berveiller, M., and Zaoui, A.: Latent hardening in copper and aluminium single crystals. Acta Metall. 28(3), 273 (1980).
36. Devincre, B., Hoc, T., and Kubin, L.: Dislocation mean free paths and strain hardening of crystals. Science 320, 1745 (2008).
37. Kubin, L., Devincre, B., and Hoc, T.: Towards a physical model for strain hardening in fcc crystals. Mater. Sci. Eng., A 19, 483484 (2008).
38. Kubin, L., Devincre, B., and Hoc, T.: Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56(20), 6040 (2008).
39. Zikry, M.A. and Kao, M.: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44(11), 1765 (1996).
40. Shanthraj, P. and Zikry, M.A.: Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59(20), 7695 (2011).
41. Zhang, M-X., Chen, S-Q., Ren, H-P., and Kelly, P.M.: Crystallography of the simple HCP/FCC system. Metall. Mater. Trans. A 39A(5), 1077 (2008).
42. Niewczas, M.: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58(17), 5848 (2010).
43. Musienko, A. and Cailletaud, G.: Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking. Acta Mater. 57(13), 3840 (2009).
44. Pouillier, E., Gourgues, A., Tanguy, D., and Busso, E.P.: A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement. Int. J. Plast. 34, 139 (2012).
45. Wu, Q. and Zikry, M.A.: Microstructural modeling of crack nucleation and propagation in high strength martensitic steels. Int. J. Solids Struct. 51(25–26), 4345 (2014).
46. Hansbo, A. and Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193(33–35), 3523 (2004).
47. Morris, J.W. Jr.: On the ductile-brittle transition in lath martensitic steel. ISIJ Int. 51(10), 1569 (2011).
48. Wang, C., Wang, M., Shi, J., Hui, W., and Dong, H.: Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr. Mater. 58(6), 492 (2008).
49. Chen, C.Q., Li, S.X., Zheng, H., Wang, L.B., and Lu, K.: An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents. Acta Mater. 52(12), 3697 (2004).
50. Arsene, S., Bai, J., and Bompard, P.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part III. Mechanical behavior of hydride in stress-relieved annealed and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34(3), 579 (2003).
51. Kubo, T., Kobayashi, Y., and Uchikoshi, H.: Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures. J. Nucl. Mater. 435(1–3), 222 (2013).
52. Rico, A., Martin-Rengel, M.A., Ruiz-Hervias, J., Rodriguez, J., and Gomez-Sanchez, F.J.: Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding. J. Nucl. Mater. 452(1–3), 69 (2014).
53. Kuroda, M., Yoshioka, K., Yamanaka, S., Anada, H., Nagase, F., and Uetsuka, H.: Influence of precipitated hydride on the fracture behavior of zircaloy fuel cladding tube. J. Nucl. Sci. Technol. 37(8), 670 (2000).
54. Mareau, C. and Daymond, M.R.: Comparison of experimentally determined texture development in zircaloy-2 with predictions from a rate-dependent polycrystalline model. Mater. Sci. Eng., A 528(29–30), 8676 (2011).
55. Hofman, D.C. and Lubarda, V.A.: New method for determining hexagonal direction indices and their relationship to crystallographic directions. J. Appl. Crystallogr. 36(1), 23 (2003).
56. Une, K., Nogita, K., Ishimoto, S., and Ogata, K.: Crystallography of zirconium hydrides in recrystallized zircaloy-2 fuel cladding lay electron backscatter diffraction. J. Nucl. Sci. Technol. 41(7), 731 (2004).
57. Perovic, V. and Weatherly, G.C.: The β to α transformation in a Zr-2.5 wt% Nb alloy. Acta Metall. 37(3), 813 (1989).
58. Tournadre, L., Onimus, F., Béchade, J-L., Gilbon, D., Cloué, J-M., Mardon, J-P., and Feaugas, X.: Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys. J. Nucl. Mater. 441(1–3), 222 (2013).
59. Yoo, M.H., Agnew, S.R., Morris, J.R., and Ho, K.M.: Non-basal slip systems in HCP metals and alloys: Source mechanisms. Mater. Sci. Eng., A 319321, 87 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed