Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:26:30.873Z Has data issue: false hasContentIssue false

Origin of dislocation loops in α-silicon nitride

Published online by Cambridge University Press:  31 January 2011

Chong-Min Wang
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, See Straβe 92, D-71074 Stuttgart, Germany
Xiao-Qing Pan
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, See Straβe 92, D-71074 Stuttgart, Germany
Manfred Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, See Straβe 92, D-71074 Stuttgart, Germany
Get access

Abstract

Dislocation loops and stacking fault formation mechanism in α–Si3N4 have been studied by annealing α–Si3N4 powders at 1500 °C and 1750 °C. Thermally activated vacancies and the structural vacancies generated with replacement of nitrogen by oxygen have been tentatively suggested to be two sources of vacancies in α–Si3N4. From the point of view of mechanism, incorporation of these vacancies is believed to lie at the building-up stage of α–Si3N4 lattice. As a result of the vacancies agglomeration, dislocation loops and stacking faults seem to be a distinctively structural feature of α–Si3N4 fabricated by different routes [chemical vapor deposition (CVD), silicon nitridation, silica carbothermal reduction, and imide decomposition]. A general discussion has been extended to the historical controversy over the oxygen and vacancy stabilization of α–Si3N4 lattice arisen from the fact that the observed unit cell dimension of α–Si3N4 has a wide variation, and also to some related phenomena in processing of Si3N4.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jack, K. H., in Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Nijhoff, The Hague, The Netherlands, 1983), pp. 4560.CrossRefGoogle Scholar
2.Rahaman, M. N., Boiteux, Y., and Dejonghe, L. C., Bull. Am. Ceram. Soc. 65, 11711176 (1986).Google Scholar
3.Wang, C. M. and Riley, F. L., J. Euro. Ceram. Soc. 10, 8393 (1995).CrossRefGoogle Scholar
4.Wang, C. M., Riley, F. L., Castro, F., and Iturriza, I., J. Am. Ceram. Soc. 76, 21362138 (1993).CrossRefGoogle Scholar
5.Wang, C. M., J. Am. Ceram. Soc. 78, 33933396 (1995).CrossRefGoogle Scholar
6.Moore, K. L., Pro. Electron Microsc. Soc. America 49, 936937 (1991).CrossRefGoogle Scholar
7.Suematsu, H., Petrovic, J. J., and Mitchell, T. E., Pro. Electron Microsc. Soc. America 50, 342344 (1992).CrossRefGoogle Scholar
8.Cotterill, R. M. J., Doyama, M., Jackson, J.J., and Meshii, M., Lattice Defects in Quenched Metals (Academic Press, New York, 1965).Google Scholar
9.Evans, A. G. and Sharp, J. V., J. Mater. Sci. 6, 12921302 (1971).CrossRefGoogle Scholar
10.Hampshire, S., Park, H. K., Thompson, D. P., and Jack, K. H., Nature (London) 274, 880882 (1978).CrossRefGoogle Scholar
11.Wilde, S., Grieveson, P., and Jack, K. H., Special Ceramics 5, 385395 (1972).Google Scholar
12.Jäger, W., Rühle, M., and Wilkens, M., Phys. Status Solidi A 31, 525533 (1975).CrossRefGoogle Scholar
13.Pan, X. Q., unpublished work.Google Scholar
14.Kato, K., Inoue, Z., Kijima, K., Kawada, I., Tanaka, H., and Yamane, T., J. Am. Ceram. Soc. 58, 9091 (1975).CrossRefGoogle Scholar
15.Hwang, S. L. and Chen, I.W., J. Am. Ceram. Soc. 77, 17111718 (1994).CrossRefGoogle Scholar
16.Wakai, F., Kodama, Y., Sakaguti, S., Murayama, N., Izaki, K., and Niihara, N., Nature (London) 344, 421423 (1990).CrossRefGoogle Scholar