Skip to main content Accessibility help
×
Home

Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes

  • Estela K. Kerstner Baldin (a1), Célia de Fraga Malfatti (a1), Rosmary Nichele Brandalise (a2), Bruno Meira Soares (a3), Daniela Pavulack (a4), Daniela Steffens (a5) and Patricia Pranke (a6)...

Abstract

The objective of the present work was to evaluate the behavior of osteogenesis of mesenchymal stem cells (MSCs) on a double-layer, protective, and bioactive hybrid coating sterilized by 3 different processes: steam autoclave, hydrogen peroxide plasma, and ethylene oxide. The hybrid coating was obtained from a sol consisting of the silane precursors tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), applied on a Ti6Al4V substrate. To promote bioactivity, hydroxyapatite (HA) particles were dispersed in a second coating (bioactive layer: TEOS/MTES + HA) applied on the first (TEOS/MTES). The sterilized coatings were evaluated by scanning electron microscopy, wettability, and micrometer roughness. The behavior of hydrolytic degradation was evaluated by the mass variation of the samples and the release of silicon by the technique of high-resolution atomic absorption spectrometry. All coatings presented morphological and superficial alterations after sterilization. Sterilization by ethylene oxide and hydrogen peroxide plasma intensified the hydrolytic degradation of the bioactive coating causing a greater release of silicon. The sterilized hybrid coatings did not show cytotoxicity to MSCs. Adhesion, viability, and osteogenic differentiation were favored on the sterilized coating of hydrogen peroxide plasma, which is opposite to what was observed for the ethylene oxide-sterilized coating.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: estela.kerstner@ufrgs.br

References

Hide All
1.Goonoo, N. and Luximon, A.B.: Regenerative medicine: Induced pluripotent stem cells and their benefits on accelerated bone tissue reconstruction using scaffolds. J. Mater. Res. 33, 1573 (2018).
2.Liao, S., Chan, C.K., and Ramakrishna, S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. Eng., C 28, 1189 (2008).
3.Park, H., Karajanagi, S., Wolak, K., Aanestad, J., Daheron, L., Kobler, J.B., Guerra, G.L., Heaton, J.Y., Langer, R.S., and Zeitels, S.M.: Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng., Part A 16, 535 (2009).
4.Boudriot, U., Bernhard, G., Roland, D., Andreas, G., and Joachim, W.H.: Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol. Symp. 225, 9 (2005).
5.Wang, P.Y., Thissen, H., and Kingshott, P.: Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater. 45, 31 (2016).
6.Preston, S.L., Alison, M.R., Forbes, S.J., Direkze, N.C., Poulsom, R., and Wright, N.A.: The new stem cell biology: Something for everyone. Mol. Pathol. 56, 86 (2003).
7.Miao, Z., Jin, J., Zhun, J., Huang, W., Qian, H., and Zhang, X.: Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30, 681 (2006).
8.Bernardi, L., Luisi, S.B., Fernandes, R., Dalberto, T.P., Valentim, L., Bogo Chies, J.A., Fossati, A.C.M., and Pranke, P.: The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J. Endod. 37, 963 (2011).
9.Romanov, Y.A., Svintsitskaya, V.A., and Smirnov, V.N.: Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells 21, 105 (2003).
10.Caplan, A.I.: Mesenchymal stem cells. J. Orthop. Res. 9, 641 (1991).
11.Dimitrievska, S., Bureau, M.N., Antoniou, J., Mwale, M., Petit, A., Lima, R.S., and Marple, B.R.: Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J. Biomed. Mater. Res., Part A 98, 576 (2011).
12.Sanaei-Rad, P., Kashi, T.S.J., Seyedjafari, E., and Soleimani, M.: Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals 44, 511 (2016).
13.Young, A.T., Kang, J.H., Venkatesan, J., Chang, H.K., Bhatnagar, I., Chang, K.Y., Salameh, Z., Kim, S.K., and Kim, D.G.: Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int. J. Biol. Macromol. 93, 1488 (2016).
14.Owens, G.J., Singh, R.K., Foroutan, F., Alqaysi, M., Han, C.M., Mahapatra, C., Kim, H.W., and Knowles, J.C.: Sol–gel-based materials for biomedical applications. Prog. Mater. Sci. 77, 1 (2016).
15.Ballarre, J., Seltzer, R., Mendoza, E., Orellano, J.C., Mai, Y.W., García, C., and Ceré, S.M.: Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater. Sci. Eng., C 31, 545 (2011).
16.Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M.C., Pacha-Olivenza, M.A., Crespo, L., González-Martín, M.L., and Babiano, R.: Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf., B 106, 248 (2013).
17.Zomorodian, A., Brusciotti, F., Fernandes, A., Carmezim, M.J., Silva, T.M., Fernandes, J.C.S., and Montenor, M.F.: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206, 4368 (2012).
18.Liu, J., Zhan, Z., Yu, M., and Li, S.: Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti–6.5Al–1Mo–1V–2Zr. Appl. Surf. Sci. 264, 507 (2013).
19.Martínez-Ibáñez, M., Juan-Díaz, M.J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., Suay, J., and Goñi, I.: Biological characterization of a new silicon-based coating developed for dental implants. J. Mater. Sci.: Mater. Med. 27, 80 (2016).
20.Park, J.H., Navarrete, R.O., Baier, R.E., Meyer, A.E., Tannenbaum, R., Boyan, B.D., and Schwartz, Z.: Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 8, 1966 (2012).
21.Galante, R., Ghisleni, D., Paradiso, P., Alves, V.D., Pinto, T.H.A., Colaço, R., and Serro, A.P.: Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng., C 78, 389 (2017).
22.Costa, D.M., Lopes, L.K.O., Tipple, A.F.V., Castillo, R.B., Hu, H., Deva, A.K., and Vickery, K.: Effect of hand hygiene and glove use on cleanliness reusable surgical instruments. J. Hosp. Infect. 97, 27 (2017).
23.Shi, X., Xu, L., Violin, K.B., and Lu, S.: Improved osseointegration of long-term stored SLA implant by hydrothermal sterilization. J. Mech. Behav. Biomed. Mater. 53, 312 (2016).
24.Antonini, L.M., Malfatti, C.F., Reilly, G.C., Owen, R., and Takimi, A.S.: Effect of sterilization on nanostructure Ti6Al4V surfaces obtained by electropolishing. J. Mater. Res. 34, 1439 (2019).
25.Heise, S., Wirth, T., Hohlinger, M., Hernandez, Y.T., Ortiz, J.A.R., Wagener, V., Virtanen, S., and Boccaccini, A.R.: Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates. Surf. Coat. Technol. 344, 553 (2018).
26.Baldin, E.K.K., Garcia, C., Henriques, J.A.P., Ely, M.R., Birriel, E.J., Brandalise, R.N., and Malfatti, C.F.: Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy. J. Mater. Res. 33, 161 (2017).
27.Baldin, E.K.K., Malfatti, C.F., Rodói, V., and Brandalise, R.N.: Effect of sterilization on the properties of a bioactive hybrid coating containing hydroxyapatite. Adv. Mater. Sci. Eng., 1 (2019).
28.Wang, M., Chen, Y., Wang, Y., and Gu, H.: Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl. Surf. Sci. 268, 73 (2013).
29.Wittenburg, G., Lauer, G., Oswald, S., Labudde, D., and Franz, C.M.: Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading. J. Biomed. Mater. Res., Part A 102, 2755 (2014).
30.Han, A., Tsoi, J.K.H., Matinlinna, J.P., Zhang, Y., and Chen, Z.: Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent. Mater. 109, 272 (2018).
31.Romero-Gavilan, F., Silva, S.B., Cañads, J.G., Palla, B., Izquierdo, R., Gurruchaga, M., Goñi, I., and Suay, J.: Control of the degradation of silica sol–gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J. Non-Cryst. Solids 453, 66 (2016).
32.Zhai, W., Lu, H., Wu, C., Chen, L., Lin, X., Naoki, K., Chen, G., and Chang, J.: Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9, 8004 (2013).
33.Juan-Díaz, M.J., Ibánez, M.M., Sáez, I.L., Izquierdo, R., Gurruchaga, M., Goñi, I., and Suay, J.: Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Prog. Org. Coat. 96, 42 (2016).
34.Huang, Q., Elklooly, T.A., Liu, Z., Zhang, R., Yang, X., Shen, Z., and Feng, Q.: Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids Surf., B 145, 37 (2016).
35.Hirano, M., Kozuka, K., Asano, Y., Kakuchi, Y., Arai, H., and Ohtsu, N.: Effect of sterilization and water rinsing on cell adhesion to titanium surfaces. Appl. Surf. Sci. 311, 498 (2014).
36.Junkar, I., Kulkarni, M., Drasler, B., Rugelj, N., Mazare, A., Flasker, A., Drobne, D., Humpolicek, P., Resnik, M., Schmuki, P., Mozetic, M., and Iglic, A.: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 79 (2016).
37.Likibi, F., Jiang, B., and Li, B.: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).
38.Qian, Z., Ross, D., Jia, W., Xing, Q., and Zhao, F.: Bioactive polydimethylsiloxane for optimal human mesenchymal stem cell sheet culture. Bioact. Mater. 3, 167 (2018).
39.Jaidev, L.R. and Chatterrjee, K.: Surface functionalization od 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161, 44 (2018).
40.Chen, C.W., Ko, C.L., Kuo, H.N., Lin, D.J., Wu, H.Y., Yang, L., Lou, C.W., and Lin, J.H.: Mineralization of progenitor cells with different implant topographies. Procedia Eng. 36, 173 (2012).
41.Matuska, A.M. and Mcfetridge, P.S.: The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion: Sterilization method modulates cell adhesion. J. Biomed. Mater. Res., Part B 103, 397 (2015).
42.Rogina, A., Antunovic, M., Pribolsan, L., Mihalic, K.C., Vukasovic, A., Ivkovic, A., Marijanovic, I., Ferrer, G.G., Ivankovic, M., and Ivankovic, H.: Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9, 397 (2017).
43.Chen, W.C. and KO, C.L.: Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Mater. Sci. Eng., C 33, 2713 (2013).
44.Curran, J., Chen, R., and John, A.H.: The guidance of human mesenchymal stem cell differentiation in by controlled modification to the cell substrate. Biomaterials 27, 4783 (2006).
45.Phillips, J.E., Petrie, T.A., Creighton, F.P., and Garcia, A.J.: Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater. 6, 12 (2010).
46.Kenry, W., Lee, W.C., Loh, K.P., and Lim, C.T.: When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 155, 236 (2018).
47.Shie, M.Y., Ding, S.J., and Chang, H.C.: The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 7, 2604 (2011).
48.Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., Toyama, Y., Taguchi, T., and Tanaka, J.: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 23 (2005).
49.Ballarre, J., Manjubala, I., Schreiner, W.H., Orellano, J.C., Fratzl, P., and Ceré, S.: Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless-steel implants. Acta Biomater. 6, 1601 (2010).
50.Ballarre, J., López, D.A., Schreiner, W.H., Durán, A., and Ceré, S.M.: Protective hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl. Surf. Sci. 253, 7260 (2007).
51.Omar, S., Repp, F., Desimone, P.M., Weinkamer, R., Wagermaier, W., Cere, S., and Ballarre, J.: Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless-steel implants: Electrochemical, bioactive and in vivo response. J. Non-Cryst. Solids 425, 1 (2015).
52.Meirelles, L., Chagastelles, P.C., and Nardi, N.B.: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204 (2006).

Keywords

Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes

  • Estela K. Kerstner Baldin (a1), Célia de Fraga Malfatti (a1), Rosmary Nichele Brandalise (a2), Bruno Meira Soares (a3), Daniela Pavulack (a4), Daniela Steffens (a5) and Patricia Pranke (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed