Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T10:12:53.789Z Has data issue: false hasContentIssue false

Oxidation behavior of bulk Ti3SiC2 at intermediate temperatures in dry air

Published online by Cambridge University Press:  01 February 2006

H.B. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

The isothermal oxidation behavior of bulk Ti3SiC2 at intermediate temperatures from 500 to 900 °C in flowing dry air was investigated. An anomalous oxidation with higher kinetics at lower temperatures was observed. This phenomenon resulted from the formation of microcracks in the oxide scales at low temperatures. The generation of these microcracks was caused by a phase change in the oxide products, i.e., the transformation of anatase TiO2 to rutile TiO2. This phase transformation resulted in tensile stress, which provided the driving force for the formation of the microcracks during oxidation. Despite the existence of microcracks, the intermediate-temperature oxidation of Ti3SiC2 generally obeyed the parabolic rate law and did not exhibit catastrophic destruction due to the fact that cracks occurring in the oxide layers were partially filled with amorphous SiO2. Therefore, further high oxidation kinetics was prevented.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sun, Z.M., Zhou, Y.C. and Li, M.S.: Oxidation behavior of Ti3SiC2-based ceramic at 900–1300 °C in air. Corros. Sci. 43, 1095 (2001).Google Scholar
2.Sun, Z., Zhou, Y. and Li, M.: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347 (2001).Google Scholar
3.Barsoum, M.W., El-Raghy, T. and Ogbuji, L.U.J.T.: Oxidation of Ti3SiC2 in air. J. Electrochem. Soc. 144, 2508 (1997).CrossRefGoogle Scholar
4.Berkowitz-Mattuck, J.B., Blackburn, P.E. and Felten, E.J.: The intermediate-temperature oxidation behavior of molybdenum disilicide. Trans. Metall. Soc. AIME 233, 1093 (1965).Google Scholar
5.Mckamey, C.G., Tortorelli, P.F., DeVan, J.H. and Carmichael, C.A.: A study of pest oxidation in polycrystalline MoSi2. J. Mater. Res. 7, 2747 (1992).CrossRefGoogle Scholar
6.Chou, T.C. and Nieh, T.G.: Kinetics of MoSi2 pest during low-temperature oxidation. J. Mater. Res. 8, 1605 (1993).Google Scholar
7.Westbrook, J.H. and Wood, D.L.: “Pest” degradation in beryllides, silicides, aluminides, and related compounds. J. Nucl. Mater. 12, 208 (1964).Google Scholar
8.Racault, C., Langlais, F. and Naslain, R.: Solid-state synthesis and characterization of the ternary phase Ti3SiC2. J. Mater. Sci. 29, 3384 (1994).CrossRefGoogle Scholar
9.Zhou, Y.C., Sun, Z.M., Chen, S.Q. and Zhang, Y.: In-situ hot pressing/solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramic. Mater. Res. Innovations 2, 142 (1998).Google Scholar
10.Wang, X.H. and Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air. Corros. Sci. 45, 891 (2003).CrossRefGoogle Scholar
11.Wang, H.X. and Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 (2003).Google Scholar
12.Wang, X.H. and Zhou, Y.C.: Oxidation behavior of TiC-containing Ti3AlC2 based material at 500–900 °C in air. Mater. Res. Innovations 7, 381 (2003).Google Scholar
13.Wang, X.H. and Zhou, Y.C.: Intermediate-temperature oxidation behavior of Ti2AlC in air. J. Mater. Res. 17, 2974 (2002).CrossRefGoogle Scholar
14.Ding, X.Z. and Liu, X.H.: Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mater. Res. 13, 2556 (1998).CrossRefGoogle Scholar
15.He, G., Fang, Q., Zhu, L.Q., Liu, M. and Zhang, L.D.: The structure and thermal stability of TiO2 grown by the plasma oxidation of sputtered metallic Ti thin films. Chem. Phys. Lett. 395, 259 (2004).CrossRefGoogle Scholar
16.Ting, C.C., Chen, S.Y. and Liu, D.M.: Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films. Thin Solid Films 402, 290 (2002).CrossRefGoogle Scholar
17.Reidy, D.J., Holmes, J.D. and Morris, M.A.: The critical size mechanism of anatase to rutile transformation for TiO2 and doped-TiO2. J. Eur. Ceram. Soc. (in press).Google Scholar
18.Tang, G.X., Zhang, R.J., Yan, Y.N. and Zhu, Z.X.: Preparation of porous anatase titania film. Mater. Lett. 58, 1857 (2004).CrossRefGoogle Scholar
19.Lee, K.S. and Park, I.S.: Anatase-phase titanium oxide by low temperature oxidation of metallic Ti thin film. Scripta Mater. 48, 659 (2003).CrossRefGoogle Scholar
20.Li, Y., White, T.J. and Lim, S.H.: Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372 (2004).CrossRefGoogle Scholar
21.Zhang, H.Z. and Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).Google Scholar
22.Shimada, S. and Kozeki, M.: Oxidation of TiC at low-temperatures. J. Mater. Sci. 27, 1869 (1992).Google Scholar
23.Shimada, S., Seki, Y. and Johnsson, M.: Thermoanalytical study on oxidation of Ti xTa1−xCyN1−y whiskers with formation of carbon. Solid State Ionics 167, 407 (2004).Google Scholar
24.Shimada, S. and Inagaki, M.: Oxidation kinetics of hafnium carbide in the temperature range of 480 °C to 600 °C. J. Am. Ceram. Soc. 75, 2671 (1992).CrossRefGoogle Scholar
25.Jiang, H., Petersson, C.S. and Nicolet, M.A.: Thermal oxidation of transition metal silicides. Thin Solid Films 140, 115 (1986).Google Scholar
26.Berkowitz-Mattuck, J.B., Rossetti, M. and Lee, D.W.: Enhanced oxidation of molybdenum disilicide under tensile stress: Relation to pest mechanisms. Metall. Trans. 1, 479 (1970).Google Scholar
27.Bartlett, R.W., McCamont, J.W. and Gage, P.R.: Structure and chemistry of oxide films thermally grown on molybdenum silicides. J. Am. Ceram. Soc. 48, 551 (1965).Google Scholar
28.Gogotsi, Y.G., Porz, F. and Dransfield, G.: Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices. Oxid. Met. 39, 69 (1993).Google Scholar
29.Gogotsi, Y.G. and Porz, F.: The oxidation of particulate-reinforced Si3N4–TiN composites. Corros. Sci. 33, 627 (1992).CrossRefGoogle Scholar
30.Ozawa, T., Iwasaki, M., Tada, H., Akita, T., Tanaka, K. and Ito, S.: Low-temperature synthesis of anatase-brookite composite nanocrystals: The junction effect on photocatalytic activity. J. Colloid Interface Sci. 281, 510 (2005).CrossRefGoogle ScholarPubMed
31.Korous, J., Chu, M.C., Nakatani, M. and Ando, K.: Crack healing behavior of silicon carbide ceramics. J. Am. Ceram. Soc. 83, 2788 (2000).Google Scholar
32.Chu, M.C., Cho, S.J., Park, H.M., Yoon, K.J. and Ryu, H.: Crack-healing in reaction-bonded silicon carbide. Mater. Lett. 58, 1313 (2004).CrossRefGoogle Scholar
33.Lee, S.K., Ishida, W., Lee, S.Y., Nam, K.W. and Ando, K.: Crack-healing behavior and resultant strength properties of silicon carbide ceramic. J. Eur. Ceram. Soc. 25, 569 (2005).Google Scholar
34.Takahashi, K., Kim, B.S., Chu, M.C., Sato, S. and Ando, K.: Crack-healing behavior and static fatigue strength of Si3N4/SiC ceramics held under stress at temperature (800, 900, 1000 °C). J. Eur. Ceram. Soc. 23, 1971 (2003).Google Scholar