Skip to main content
×
×
Home

Oxidation behavior of vacuum plasma-sprayed hafnium–tantalum nitrides

  • Bradford C. Schulz (a1), Daniel Butts (a2) and Gregory B. Thompson (a3)
Abstract

A series of (HfN)1−x (TaN) x , ceramics with x representing the starting powder blend compositions of 0.0, 18.8, 28.1, and 46.7 at.%, have been fabricated by vacuum plasma spraying. During the plasma spraying, the mixture lost approximately 25 at.% nitrogen facilitating the precipitation of metallic and metal-rich nitride phases. These specimens underwent static air oxidation exposure up to 1700 °C. In general, it was found that the addition of tantalum nitrides to the hafnium nitrides resulted in poorer oxidation behavior. However, the 18.8 at.% specimen deviated from this trend and had the lowest observed mass change. This specimen formed a dark-colored oxide scale, indexed as Hf6Ta2O17, which acted as a passivation layer. Within the scale, hafnium oxynitride phases were observed. A transformation pathway in forming these rhombohedral oxynitride phases is proposed by the filling in of oxygen in the light element interstitial locations of the rhombohedral ε-Hf3N2 and ζ-Hf4N3 structures.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: gthompson@eng.ua.edu
References
Hide All
1. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I.: UHTCS: Ultra-high temperature ceramic materials for extreme enviornment applications. Electrochem. Soc. Interface 16(4), 3036 (2007).
2. Perry, A.J.: The refractories HfC and HfN—A survey. Powder Metall. Int. 19(1), 2935 (1987).
3. Johansson, B.O., Helmersson, U., Hibbs, M.K., and Sundgren, J.E.: Reactively magnetron sputtered Hf-N films I. Composition and structure. J. Appl. Phys. 58(8), 31043111 (1985).
4. Zerr, A., Miehe, G., and Riedel, R.: Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat. Mater. 2, 185189 (2003).
5. Balani, K., Gonzalez, G., and Agarwal, A.: Synthesis, microstructure characterization, and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 89(4), 14191425 (2006).
6. Desmaison-Brut, M., Themalin, L., Valin, F., and Boncoeur, M.: Mechanical proprties of hot-isostatically-pressed titanium nitride. Eur.Ceram. 3, 258262 (1989).
7. Limeng, L., Feng, Y., and Yu, Z.: Microstructure and mechanical properties of spark plasma sintered TaC0.7 ceramics. J. Am. Ceram. Soc. 93(10), 29452947 (2010).
8. Carney, C.M., Parthasarathy, T.A., and Cinibulk, M.K.: Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J. Am. Ceram. Soc. 94(8), 26002607 (2011).
9. Shimada, S.: Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics 141142, 99104 (2001).
10. Shimada, S.: A thermoanalytical study of the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics 149(3–4), 319326 (2002).
11. Shimada, S.: Microstructural observation of ZrO2 scales formed by oxidation of ZrC single crystals with formation of carbon. Solid State Ionics 101103, 749753 (1997).
12. Shimada, S. and Inagaki, M.: A kinetic study of oxidation of niobium carbide. Solid State Ionics 6365, 312317 (1993).
13. Shimada, S., Nakajima, K., and Inagaki, M.: Oxidation of single crystals of hafium carbide in a temperature range of 600° to 900°C. J. Am. Ceram. Soc. 80(7), 17491756 (1997).
14. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J.: A Model for the Oxidation of ZrB2, HfB2 and TiB2 . Acta Materialia 55(17), 59996010 (2007).
15. Brady, D.P., Fuss, F.N., and Gerstenberg, D.: Thermal oxidation and resistivity of tantalum nitride films. Thin Solid Films 66(3), 287302 (1980).
16. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J.: Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2 . J. Am. Ceram. Soc. 92(5), 10791086 (2009).
17. Desmaison, M., Alexandre, N., and Desmaison, J.: Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17(11), 13251334 (1997).
18. Desmaison-Brut, M. and Montintin, J.: Mechanical properties and oxidation behavior of HIPed hafnium nitride ceramics. J. Eur. Ceram. Soc. 13(4), 379386 (1994).
19. Opeka, M., Talmy, I., Wuchina, E., Zaykoski, J., and Causey, S.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19(13–14), 24052414 (1999).
20. Wuchina, E.: Oxidation of Hf based nitrides and borides. Electrochem. Soc., Proc. 16, 240252 (2004).
21. Okamoto, H.: Hf-O (hafnium-oxygen). ASM Int. 29, 124 (2008).
22. Shin, D., Arroyave, R., and Liu, Z.: Thermodynamic modeling of the Hf-Si-O system. Comput. Coupling Phase Diagrams Thermochem. 30(4), 375386 (2008).
23. Schulz, B.C., Wang, B., Morris, R.A., Butts, D., and Thompson, G.B.: Influence of hafnium carbide on vacuum plasma spray processed tantalum carbide microstructures. J. Eur. Ceram. Soc. 33(6), 12191224 (2013).
24. Trignan-Piot, L., Berardo, M., Gastaldi, J., and Giorgio, S.: Influence of plasma spraying parameters on the carbon content and porosity of TaC coatings. Surf. Coat. Technol. 79(1–3), 113118 (1996).
25. Williams, C.B. and Carter, D.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer Science, New York, 1996).
26. Morris, R.A., Wang, B., Thompson, G.B., and Butts, D.: Variation in tantalum carbide microstructures with changing carbon content. J. Appl. Ceram. Technol. 89(3), 540551 (2012).
27. Morris, R.A., Wang, B., Matson, L., and Thompson, G.B.: Microstructural formations and phase transformations pathways in hot isostatically pressed tantalum carbides. Acta Mater. 60(1), 139148 (2012).
28. ASM International: Handbook of Thermal Spray Technology (ASM International, Materials Park, OH, USA, 2004).
29. International Centre for Diffraction Data: 00-038-1478 (Alpha Hf), 2012.
30. International Centre for Diffraction Data: 04-004-6450 (HfN0.67), 2013.
31. International Centre for Diffraction Data: 04-004-6451 (HfN0.75), 2013.
32. International Centre for Diffraction Data: 00-025-1410 (HfN), 2013.
33. International Centre for Diffraction Data: 00-004-0788 (Cubic Ta), 2012.
34. International Centre for Diffraction Data: 01-089-4764 (Ta2N), 2012.
35. International Centre for Diffraction Data: 00-039-1485 (Hex TaN), 2012.
36. International Centre for Diffraction Data: 00-049-1283 (Cubic TaN), 2012.
37. International Centre for Diffraction Data: 00-006-0318 (Mono HfO2), 2013.
38. International Centre for Diffraction Data: 00-008-0342 (Tetra HfO2), 2013.
39. International Centre for Diffraction Data: 00-021-0904 (Ortho HfO2), 2013.
40. International Centre for Diffraction Data: 00-053-0550 (Cubic HfO2), 2013.
41. International Centre for Diffraction Data: 00-050-1171 (Cubic Hf2ON2), 2013.
42. International Centre for Diffraction Data: 00-050-1173 (Rhom Hf7O8N4), 2013.
43. International Centre for Diffraction Data: 33-1391 (Mono Ta2O5), 2012.
44. International Centre for Diffraction Data: 33-1390 (Tri Ta2O5), 2012.
45. International Centre for Diffraction Data: 21-1199 (Tetra Ta2O5), 2012.
46. International Centre for Diffraction Data: 25-0922 (Ortho Ta2O5), 2012.
47. International Centre for Diffraction Data: 18-1304 (Hex Ta2O5), 2012.
48. International Centre for Diffraction Data: 00-044-0998 (Ortho Hf6Ta2O17), 2015.
49. Weibel, E.R.: Stereological Methods (Academic Press/Harcourt Brace Javanovich, New York, NY, 1989).
50. Klechkovskaya, V.V., Pinkser, Z.G., and Khikova, V.I.: Nonstiochiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides. Kristallografiya 17, 506 (1972).
51. Reisman, A., Holtzberg, F., Berkenblit, M., and Berry, M.: Reactions of the group VB pentoxides with alkali oxides and carbonates. III. Thermal and X-Ray phase diagrams of the system K2O or K2CO3 with Ta2O5 . J. Am. Chem. Soc. 78(18), 45144520 (1956).
52. Humphrey, G.L.: Heats of formation of tantalum, niobium and zirconium oxides, and tantalum carbide. J. Am. Chem. Soc. 76(4), 978980 (1954).
53. Humphrey, G.L.: Heats of formation of hafnium oxide and hafnium nitride. J. Am. Chem. Soc. 75(12), 28062807 (1953).
54. Rudy, E.: The Crystal structures of Hf3N2 and Hf4N3 . Metall. Mater. Trans. 1(5), 12491252 (1970).
55. Rudy, E.: Part V. Compendium of Phase Diagram Data (USAF, Wright-Patterson Air Force Base, Ohio, 1969).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed