Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 79
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Baranovskiy, A. and Amouyal, Y. 2016. Structural stability of calcium-manganate based CaO(CaMnO3)m (m = 1, 2, 3, ∞) compounds for thermoelectric applications. Journal of Alloys and Compounds, Vol. 687, p. 562.


    Garrity, Kevin F. 2016. First-principles search forn-type oxide, nitride, and sulfide thermoelectrics. Physical Review B, Vol. 94, Issue. 4,


    Graff, Ayelet and Amouyal, Yaron 2016. Effects of Lattice Defects and Niobium Doping on Thermoelectric Properties of Calcium Manganate Compounds for Energy Harvesting Applications. Journal of Electronic Materials, Vol. 45, Issue. 3, p. 1508.


    Han, Chao Sun, Qiao Li, Zhen and Dou, Shi Xue 2016. Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Advanced Energy Materials, p. 1600498.


    Huang, Shouyuan and Xu, Xianfan 2016. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery. Journal of Electronic Materials,


    Ikeda, Yusuke Saito, Kengo and Okazaki, Ryuji 2016. Thermoelectric transport in the layered Ca3Co4–xRhxO9 single crystals. Journal of Applied Physics, Vol. 119, Issue. 22, p. 225105.


    Liu, Shengman Zhu, Caixia Ge, Xianghong Wang, Tingtai Feng, Junlan and Yang, Linfeng 2016. Enhanced thermoelectric performance in c-axis oriented Ca3Co4O9films by Ag addition through multiple annealing. Modern Physics Letters B, Vol. 30, Issue. 15, p. 1650202.


    Lu, Zhilun Sinclair, Derek C. Reaney, Ian M. and Tan, X. 2016. The Influence of La Doping and Heterogeneity on the Thermoelectric Properties of Sr3Ti2O7Ceramics. Journal of the American Ceramic Society, Vol. 99, Issue. 2, p. 515.


    Miyazawa, K. Amaral, F. Kovalevsky, A.V. and Graça, M.P.F. 2016. Hybrid microwave processing of Ca3Co4O9 thermoelectrics. Ceramics International, Vol. 42, Issue. 8, p. 9482.


    Pandey, Sudeep J. Joshi, Giri Wang, Shidong Curtarolo, Stefano and Gaume, Romain M. 2016. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics. Journal of Electronic Materials,


    Roy, Anindya Cheng, Yu-Ting and Falk, Michael L. 2016. Amorphous ZnO-Based Compounds as Thermoelectrics. The Journal of Physical Chemistry C, Vol. 120, Issue. 5, p. 2529.


    Saini, S. Mele, P. Miyazaki, K. and Tiwari, A. 2016. On-chip thermoelectric module comprised of oxide thin film legs. Energy Conversion and Management, Vol. 114, p. 251.


    Saurel, Damien 2016. Materials for Sustainable Energy Applications.


    Sun, Jifeng and Singh, David J. 2016. Thermoelectric properties of n-type SrTiO3. APL Materials, Vol. 4, Issue. 10, p. 104803.


    Terasaki, Ichiro Okazaki, Ryuji and Ohta, Hiromichi 2016. Search for non-equilibrium thermoelectrics. Scripta Materialia, Vol. 111, p. 23.


    Terasaki, Ichiro 2016. Research Update: Oxide thermoelectrics: Beyond the conventional design rules. APL Materials, Vol. 4, Issue. 10, p. 104501.


    Ahmed, F. Munir, A. Saqib, M. and Anis-ur-Rehman, M. 2015. Introducing Rare Earth Dopants for Controlled Conductivity in Thermoelectric Cobaltites. Journal of Superconductivity and Novel Magnetism, Vol. 28, Issue. 3, p. 961.


    Brinks, P. and Huijben, M. 2015. Epitaxial Growth of Complex Metal Oxides.


    Chen, Yubo Ma, Runxiang Wang, Kunlun Gao, Feng Hu, Xing and Song, Hongzhang 2015. Thermoelectric properties of hole-dopedYb1-xPbxBaCo4O7+δceramics. International Journal of Modern Physics B, Vol. 29, Issue. 14, p. 1550082.


    Chen, Y.B. Cao, X.L. Ma, R.X. Gao, F. Hu, X. and Song, H.Z. 2015. Enhanced Thermoelectric Properties of Hole-Doped Lu1−x Pb x BaCo4O7 Ceramics. Journal of Electronic Materials, Vol. 44, Issue. 10, p. 3545.


    ×

Oxide thermoelectrics: The challenges, progress, and outlook

  • Jian He (a1), Yufei Liu (a1) and Ryoji Funahashi (a2)
  • DOI: http://dx.doi.org/10.1557/jmr.2011.108
  • Published online: 01 July 2011
Abstract
Abstract

Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: jianhe@clemson.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

5.G.D. Mahan : Figure-of-merit for thermoelectrics. J. Appl. Phys. 65, 1578 (1989).

7.I. Terasaki , Y. Sasago , and K. Uchinokura : Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997).

8.M. Ito , T. Nagira , D. Furumoto , S. Katsuyama , and H. Nagai : Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403 (2003).

9.K. Fujita , T. Mochida , and K. Nakamura : High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).

10.Y. Ando , N. Miyamoto , K. Segawa , T. Kawata , and I. Terasaki : Specific-heat evidence for strong electron correlation in the thermoelectric materials (Na,Ca)Co2O4. Phys. Rev. B 60, 10580 (1999).

11.Y. Wang , N.S. Rogado , R.J. Cava , and N.P. Ong : Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 (2003).

12.W. Koshibae , K. Tsutsui , and S. Maekawa : Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000).

13.D.J. Singh and D. Kasinathan : Thermoelectric properties of NaxCoO2 and prospects for other oxide thermoelectrics. J. Electron. Mater. 36, 736 (2007).

14.K. Koumoto , Y.F. Wang , R. Zhang , A. Kosuga , and R. Funahashi : Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).

16.H. Ohta , K. Sugiura , and K. Koumoto : Recent progress in oxide thermoelectric materials p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).

17.C.J. Vineis , A. Shakouri , A. Marjumdar , and M.G. Kanatzidis : Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).

18.M.G. Kanatzidis : Nanostructured thermoelectric: The new paradigm? Chem. Mater. 22, 648 (2010).

19.A.J. Minnich , M.S. Dresselhaus , Z.F. Ren , and G. Chen : Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).

20.G. Mahan : Benedicks effect: Nonlocal electron transport in metals. Phys. Rev. B 43, 3945 (1991).

22.P. Vaqueiro and A.V. Powell : Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20, 9577 (2010).

23.S. Li , R. Funahashi , I. Matsubara , K. Ueno , and H. Yamada : High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).

24.R. Funahashi , I. Matsubara , H. Ikuta , T. Takeuchi , U. Mizutani , and S. Sodeoka : Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).

25.M. Shikano and R. Funahashi : Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).

26.Y. Zhou , I. Matsubara , S. Horii , T. Takeuchi , R. Funahashi , M. Shikano , J. Shimoyama , K. Kishio , W. Shin , N. Izu , and N. Murayama : Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramic. J. Appl. Phys. 93, 2653 (2003).

27.D. Wang , L. Cheng , Q. Yao , and J. Li : High-temperature thermoelectrics properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).

28.N.V. Nong , C.-J. Liu , and M. Ohtaki : Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4-xGaxO9+δ. J. Alloy. Comp. 491, 53 (2010).

29.R. Funahashi , I. Matsubara , and S. Sodeoka : Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385 (2000).

30.R. Funahashi and M. Shikano : Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).

31.R. Funahashi and I. Matsubara : Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCo2 whiskers. Appl. Phys. Lett. 79, 362 (2007).

34.S. Ohta , T. Nomura , H. Ohta , and K. Koumoto : High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).

35.S. Ohta , H. Ohta , and K. Koumoto : Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystal. J. Ceram. Soc. Jpn. 114, 105 (2006).

36.Y. Cui , J. He , G. Amow , and H. Kleinke : Thermoelectric properties of n-type double substituted SrTiO3 bulk materials. Dalton Trans. 39, 1031 (2010).

37.T. Okuda , K. Nakanishi , S. Miyasaka , and Y. Tokura : Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0<∼ x<∼0.1). Phys. Rev. B 63, 113104 (2001).

38.A. Kosuga , Y. Isse , Y. Wang , K. Koumoto , and R. Funahashi : High-temperature thermoelectric properties of Ca0.9-xSrxYb0.1MnO3-δ (0 ≤ x ≤ 0.2). J. Appl. Phys. 105, 093717 (2009).

39.Y. Wang , Y. Sui , and W. Su : High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, … Yb). J. Appl. Phys. 104, 093703 (2008).

40.L. Bocher , M.H. Aguirre , D. Logvinovich , A. Shkabko , and R. Robert : CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).

41.X.Y. Huang , Y. Miyazaki , and T. Kajitani : High temperature thermoelectric properties of Ca1-xBixMn1-yVyO3-δ(0≤x=y≤0.08). Solid State Commun. 145, 132 (2008).

42.K. Sakai , M. Karppinen , J.M. Chen , R.S. Liu , S. Sugihara , and H. Yamauchi : Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi, Pb)2Ba2O4±ω]0.5CoO2. Appl. Phys. Lett. 88, 232102 (2006).

43.W. Kobayashi , S. Hébert , D. Pelloquin , O. Pérez , and A. Maignan : Enhanced thermoelectric properties in a layered rhodium oxide with a trigonal symmetry. Phys. Rev. B 76, 245102 (2007).

44.J. Androulakis , P. Migiakis , and J. Giapintzakis : La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004).

45.W.J. Weber , C.W. Griffin , and J.L. Bates : Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).

47.E. Guilmeau , D. Bérardan , Ch. Simon , A. Gaignan , B. Raveau , D. Ovono Ovono , and F. Delorme : Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys. 106, 053715 (2009).

48.Y.F. Wang , K.H. Lee , H. Ohta , and K. Koumoto : Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1, 2) ceramics. J. Appl. Phys. 105, 103701 (2009).

49.Y.F. Wang , K.H. Lee , H. Ohta , and K. Koumoto : Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n= 1,2) ceramics. Ceram. Int. 34, 849 (2008).

51.W. Shin and N. Murayama : High performance p-type thermoelectric oxide based on NiO. Mater. Lett. 45, 302 (2000).

52.R. Ishikawa , Y. Ono , Y. Miyazaki , and T. Kajitani : Low-temperature synthesis and electric properties of new layered cobaltite, SrxCoO2. Jpn. J. Appl. Phys. 41(Part 2), L337 (2002).

53.M. Ohtaki , T. Tsubota , K. Eguchi , and H. Arai : High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).

54.T. Tsubota , M. Ohtaki , K. Eguchi , and H. Arai : Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).

55.S. Katsuyama , Y. Takagi , M. Ito , K. Majima , H. Nagai , H. Sakai , K. Yoshimura , and K. Kosuge : Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 92, 1391 (2002).

56.M. Ohtaki , K. Araki , and K. Yamamoto : High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234 (2009).

57.H. Ohta , W.S. Seo , and K. Koumoto : Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).

58.R. Koc and H.U. Anderson : Electrical conductivity and Seebeck coefficient of (La, Ca)(Cr, Co)O3. J. Mater. Sci. 27, 5477 (1992).

59.C. Wood and D. Emin: Conduction mechanism in boron carbide. Phys. Rev. B 29, 4582 (1984).

60.H. Ohta , A. Mizutani , K. Sugiura , M. Hirano , H. Hosono , and K. Koumoto : Surface modification of glass substrate for oxide heteroepitaxy: Pastable three-dimensionally oriented layered oxide thin film. Adv. Mater. 18, 1649 (2006).

61.K. Sugiura , H. Ohta , K. Nomura , M. Hirano , H. Hosono , and K. Koumoto : High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006).

62.K. Sugiura , H. Ohta , K. Nomura , T. Saito , Y. Ikuhara , M. Hirano , H. Hosono , and K. Koumoto : Thermoelectric properties of the layer cobaltite Ca3Co4O9 epitaxial filmsfabricated by topotactic ion-exchange method. Mater. Trans. 48, 2104 (2007).

63.S. Ohta , T. Nomura , H. Ohta , M. Hirano , H. Hosono , and K. Koumoto : Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 092108 (2005).

64.D. Kurita , S. Ohta , K. Sugiura , H. Ohta , and K. Koumoto : Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006).

65.K.H. Lee , A. Ishizaki , S.W. Kim , H. Ohta , and K. Koumoto : Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007).

66.H. Ohta , K. Nomura , M. Orita , M. Hirano , K. Ueda , T. Suzuki , Y. Ikuhara , and H. Hosono : Single-crystalline films of InGaO3(ZnO)m (m=integer) homologous phase grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 13, 139 (2003).

67.J.P. Dismukes , L. Ekstrom , E.F. Steigmeier , I. Kudman , and D.S. Beers : Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).

68.S. Ishiwata , I. Terasaki , Y. Kusano , and M. Takano : Transport properties of misfit-layered cobalt oxide [Sr2O2-δ]0.53CoO2. J. Phys. Soc. Jpn. 75, 104716 (2006).

69.K. Kato , M. Yamamoto , S. Ohta , H. Muta , K. Kurosaki , S. Yamanaka , H. Iwasaki , H. Ohta , and K. Koumoto : The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3. J. Appl. Phys. 102, 116107 (2007).

70.H. Muta , A. Ieda , K. Kurosaki , and S. Yamanaka : Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).

71.M. Yamamoto , H. Ohta , and K. Koumoto : Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system. Appl. Phys. Lett. 90, 072101 (2007).

72.H. Ohta , S.W. Kim , Y. Mune , T. Mizoguchi , K. Nomura , S. Ohta , T. Nomura , Y. Nakanishi , Y. Ikuhara , M. Hirano , H. Hosono , and K. Koumoto : Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007).

73.Y. Mune , H. Ohta , K. Koumoto , T. Mizoguchi , and Y. Ikuhara : Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007).

74.K. H. Lee , Y. Mune , H. Ohta , and K. Koumoto : Thermal stability of giant thermoelectric Seebeck coefficient for SrTiO3/SrTi0.8Nb0.2O3 superlattices at 900 K. Appl. Phys. Express. 1, 015007 (2008).

75.N. Daude , C. Gout , and C. Jouanin : Electronic band structure of titanium dioxide. Phys. Rev. B 15, 3229 (1977).

76.H. Ohta , R. Huang , and Y. Ikuhara : Large enhancement of the thermoelectrics Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers. Phys. Status Solidi RRL 2, 105 (2008).

77.L.D. Hicks and M.S. Dresselhaus : Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).

79.L.D. Hicks , T.C. Harman , X. Sun , and M.S. Dresselhaus : Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, 10493 (1996).

80.J.P. Heremans : Low-dimensional thermoelectricity. Acta Physiol. Pol. 108, 609 (2005).

81.P. Pichanusakorn and P. Bandaru : Nanostructured thermoelectrics. Mater. Sci. Eng., R 67, 19 (2010).

83.A.I. Hochbaum , R. Chen , R.D. Delgado , W. Liang , E.C. Garnett , M. Najarian , A. Marjumdar , and P. Yang : Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

84.A.I. Bouake , Y. Bunimovich , J. Tahir-Kheli , J.K. Yu , W.A. Goddard III, and J.R. Heath : Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).

85.R. Yang and G. Chen : Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).

86.M.S. Dresselhaus , G. Chen , M.Y. Tang , R. Yang , H. Lee , D. Wang , Z. Ren , J.-P. Fleurial , and P. Gogna : New direction for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).

87.D.L. Medlin and G.J. Snyder : Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

88.D.J. Bergman and O. Levy : Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 6821 (1991).

89.J.M.O. Zide , D. Vashaee , Z.X. Bian , G.H. Zeng , J.E. Bowers , and A. Shakouri : Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).

90.M. Zebarjadi , K. Esfarjani , S. Shakouri , Z.X. Bian , J.H. Bahk , and G.H. Zeng : Effect of nanoparticles on electron and thermoelectric transport. J. Electron. Mater. 38, 954 (2009).

91.D. Li , Y. Wu , and R. Fan , P. Yang , and A. Marjumdar : Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003).

92.W. Kim , J. Zide , A. Gossard , D. Klenov , S. Stemmer , A. Shakouri , and A. Marjumdar : Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

93.G. Joshi , H. Lee , Y. Lan , X. Wang , G. Zhu , D. Wang , R.W. Gould , D.C. Cuff , M.Y. Tang , M.S. Dresselhaus , G. Chen , and Z. Ren : Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).

94.C. Chiritescu , D.G. Cahill , N. Nguyen , D. Johnson , A. Bodapati , P. Keblinski , and P. Zschack : Ultra low thermal conductivity in disordered layer WSe2 crystals. Science 315, 351 (2006).

95.G.J. Snyder and E.S. Toberer : Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

96.D.G. Cahill , S.K. Watson , and R.O. Pohl : Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

97.A. Watanabe , T. Fukui , K. Nogi , Y. Kizaki , Y. Noguchi , and M. Miyayama : High-quality lead-free ferroelectric ceramics prepared from flash-creating-method-derived nanopowder. J. Ceram. Soc. Jpn. 114, 97 (2006).

98.X.Y. Zhao , X. Shi , L.D. Chen , W.Q. Zhang , S.Q. Bai , Y.Z. Pei , and X.Y. Li : Synthesis of YbyCo4Sb12/Y2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).

99.E. Alleno , L. Chen , C. Chubilleau , B. Lenoir , O. Rouleau , M.F. Trichet , and B. Villeroy : Thermal conductivity reduction in CoSb2-CeO2 nanocomposites. J. Electron. Mater. 39, 1966 (2010).

100.Z. He , C. Stiewe , D. Platzek , G. Karpinski , E. Muller , S. Li , M. Torpak , and M. Muhammed : Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).

101.D. Berardan , E. Guilmeau , A. Maignan , and B. Raveau : In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 146, 97 (2008).

102.N. Wang , L. Han , Y. Ba , Y. Wang , C. Wan , K. Fujinami , and K. Koumoto : Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 39, 1777 (2010).

103.N. Wang , L. Han , H. He , Y. Ba , and K. Koumoto : Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J. Alloy. Comp. 497, 308 (2010).

104.N. Wang , H. He , Y. Ba , C. Wan , and K. Koumoto : Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098 (2010).

105.J.R. Sootsman , D.Y. Chung , and M.G. Kanatzidis : New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616 (2009).

106.S. Yeo , Y. Horibe , S. Mori , C.M. Tseng , C.H. Chen , A.G. Khachaturyan , C.L. Zhang , and S.-W. Cheong : Solid-state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).

107.A. Kosuga , K. Kurosaki , K. Yubuta , A. Charoenphakdee , S. Yamanaka , and R. Funahashi : Thermal conductivity characterization in bulk Zn(Mn, Ga)O4 with self-assembled nanocheckerboard structures. Jpn. J. Appl. Phys. 48, 010201 (2009).

108.Z. Hashin and S. Shtrikman : On some variational principles in anisotropic and non-homogeneous elasticity. J. Mech. Phys. Solids 10, 335 (1962).

109.Z. Hashin and S. Shtrikman : Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solids 10, 343 (1962).

110.I. Matsubara , R. Funahashi , T. Takeuchi , S. Sodeoka , T. Shimizu , and K. Ueno : Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett. 78, 3627 (2001).

111.W. Shin , N. Murayama , K. Ikeda , and S. Sago : Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).

112.R. Funahashi , S. Urata , K. Mizuno , T. Kouuchi , and M. Mikami : Ca2.7Bi0.3Co4O9-La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).

113.S. Urata , R. Funahashi , T. Mihara , A. Kosuga , S. Sodeoka , and T. Tanaka : Power generation of a p-Type Ca3Co4O9/n-type CaMnO3 module. Int. J. Appl. Ceram. Technol. 4, 535 (2007).

114.K. Uchida , J. Xiao , H. Adachi , J. Ohe , S. Takahashi , J. Leda , T. Ota , Y. Kajiwara , U. Umezawa , H. Kawai , G.E.W. Bauer , S. Maekawa , and E. Saitoh : Spin Seebeck insulator. Nat. Mater. 9, 894 (2010).

115.T.E. Humphery and K. Linke : Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).

116.R. Funanashi , M. Mikami , S. Urata , M. Kitawaki , T. Kouuchi , and K. Mizuno : High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16, 70 (2005).

117.K. Kihou , C.H. Lee , K. Miyazawa , P.M. Shirage , A. Iyo , and H. Eisaki : Thermoelectric properties of LaFeAsO1-y at low temperature. J. Appl. Phys. 108, 033703 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: