Skip to main content

Oxide thermoelectrics: The challenges, progress, and outlook

  • Jian He (a1), Yufei Liu (a1) and Ryoji Funahashi (a2)

Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Tritt T.M., Subramanian M.A., Bottner H., Caillat T., Chen G., Funahashi R., Ji X., Kanatzidis M., Koumoto K., Nolas G.S., Poon J., Rao A.M., Terasaki I., Venkatasubramanian R., and Yang J.: Special issue on harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, (2006).
2.Nolas G.S., Sharp J., and Goldsmid H.J.: Thermoelectrics Basic Principles and New Materials Developments (Springer-Verlag, Berlin Heidelberg, 2001).
3.Slack G.A.: New materials and performance limits for thermoelectric cooling, in CRC Handbook of Thermoelectrics, edited by Rowe D.M. (CRC Press, Boca Raton, 1995), pp. 407440.
4.Ioffe A.F.: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).
5.Mahan G.D.: Figure-of-merit for thermoelectrics. J. Appl. Phys. 65, 1578 (1989).
6.Goldsmid H.J.: Electronic Refrigeration (Pion Limited, London, 1986).
7.Terasaki I., Sasago Y., and Uchinokura K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997).
8.Ito M., Nagira T., Furumoto D., Katsuyama S., and Nagai H.: Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403 (2003).
9.Fujita K., Mochida T., and Nakamura K.: High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).
10.Ando Y., Miyamoto N., Segawa K., Kawata T., and Terasaki I.: Specific-heat evidence for strong electron correlation in the thermoelectric materials (Na,Ca)Co2O4. Phys. Rev. B 60, 10580 (1999).
11.Wang Y., Rogado N.S., Cava R.J., and Ong N.P.: Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 (2003).
12.Koshibae W., Tsutsui K., and Maekawa S.: Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000).
13.Singh D.J. and Kasinathan D.: Thermoelectric properties of NaxCoO2 and prospects for other oxide thermoelectrics. J. Electron. Mater. 36, 736 (2007).
14.Koumoto K., Wang Y.F., Zhang R., Kosuga A., and Funahashi R.: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).
15.Ohtaki M.: Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Newslett. Kyushu Univ. G-COE program Novel Carbon Resources Sciences, 3, 8 (2010).
16.Ohta H., Sugiura K., and Koumoto K.: Recent progress in oxide thermoelectric materials p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).
17.Vineis C.J., Shakouri A., Marjumdar A., and Kanatzidis M.G.: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).
18.Kanatzidis M.G.: Nanostructured thermoelectric: The new paradigm? Chem. Mater. 22, 648 (2010).
19.Minnich A.J., Dresselhaus M.S., Ren Z.F., and Chen G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).
20.Mahan G.: Benedicks effect: Nonlocal electron transport in metals. Phys. Rev. B 43, 3945 (1991).
21.Anatychuk L.I. and Bulat L.P.: Thermoelectric phenomena under large temperature gradients, in CRC Handbook of Thermoelectrics, edited by Rowe D.M. (CRC Press, Boca Raton, 2005), pp. 38.
22.Vaqueiro P. and Powell A.V.: Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20, 9577 (2010).
23.Li S., Funahashi R., Matsubara I., Ueno K., and Yamada H.: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).
24.Funahashi R., Matsubara I., Ikuta H., Takeuchi T., Mizutani U., and Sodeoka S.: Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).
25.Shikano M. and Funahashi R.: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).
26.Zhou Y., Matsubara I., Horii S., Takeuchi T., Funahashi R., Shikano M., Shimoyama J., Kishio K., Shin W., Izu N., and Murayama N.: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramic. J. Appl. Phys. 93, 2653 (2003).
27.Wang D., Cheng L., Yao Q., and Li J.: High-temperature thermoelectrics properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).
28.Nong N.V., Liu C.-J., and Ohtaki M.: Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4-xGaxO9+δ. J. Alloy. Comp. 491, 53 (2010).
29.Funahashi R., Matsubara I., and Sodeoka S.: Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385 (2000).
30.Funahashi R. and Shikano M.: Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).
31.Funahashi R. and Matsubara I.: Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCo2 whiskers. Appl. Phys. Lett. 79, 362 (2007).
32.Shen J.J., Liu X.X., Zhu T.J., and Zhao X.B.: Improved thermoelectric properties of La-doped Bi2Sr2Co2O9 layered misfit oxides. J. Electron. Mater. 44, 1889 (2009).
33.Koumoto K., Terasaki I., and Funahashi R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).
34.Ohta S., Nomura T., Ohta H., and Koumoto K.: High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).
35.Ohta S., Ohta H., and Koumoto K.: Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystal. J. Ceram. Soc. Jpn. 114, 105 (2006).
36.Cui Y., He J., Amow G., and Kleinke H.: Thermoelectric properties of n-type double substituted SrTiO3 bulk materials. Dalton Trans. 39, 1031 (2010).
37.Okuda T., Nakanishi K., Miyasaka S., and Tokura Y.: Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0<∼ x<∼0.1). Phys. Rev. B 63, 113104 (2001).
38.Kosuga A., Isse Y., Wang Y., Koumoto K., and Funahashi R.: High-temperature thermoelectric properties of Ca0.9-xSrxYb0.1MnO3-δ (0 ≤ x ≤ 0.2). J. Appl. Phys. 105, 093717 (2009).
39.Wang Y., Sui Y., and Su W.: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, … Yb). J. Appl. Phys. 104, 093703 (2008).
40.Bocher L., Aguirre M.H., Logvinovich D., Shkabko A., and Robert R.: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).
41.Huang X.Y., Miyazaki Y., and Kajitani T.: High temperature thermoelectric properties of Ca1-xBixMn1-yVyO3-δ(0≤x=y≤0.08). Solid State Commun. 145, 132 (2008).
42.Sakai K., Karppinen M., Chen J.M., Liu R.S., Sugihara S., and Yamauchi H.: Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi, Pb)2Ba2O4±ω]0.5CoO2. Appl. Phys. Lett. 88, 232102 (2006).
43.Kobayashi W., Hébert S., Pelloquin D., Pérez O., and Maignan A.: Enhanced thermoelectric properties in a layered rhodium oxide with a trigonal symmetry. Phys. Rev. B 76, 245102 (2007).
44.Androulakis J., Migiakis P., and Giapintzakis J.: La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004).
45.Weber W.J., Griffin C.W., and Bates J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).
46.Kuriyama H., Nohara M., Sasagawa T., Takubo K., Mizokawa T., Kimura K., and Takagi H.: High-temperature thermoelectric properties of delafossite oxide CuRh1-xMgxO2, Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 97, (2007).
47.Guilmeau E., Bérardan D., Simon Ch., Gaignan A., Raveau B., Ovono Ovono D., and Delorme F.: Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys. 106, 053715 (2009).
48.Wang Y.F., Lee K.H., Ohta H., and Koumoto K.: Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1, 2) ceramics. J. Appl. Phys. 105, 103701 (2009).
49.Wang Y.F., Lee K.H., Ohta H., and Koumoto K.: Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n= 1,2) ceramics. Ceram. Int. 34, 849 (2008).
50.Lee K.H., Wang Y.F., Hyuga H., Kita H., Ohta H., and Koumoto K.: Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. J. Electroceram. 24, 76 (2010).
51.Shin W. and Murayama N.: High performance p-type thermoelectric oxide based on NiO. Mater. Lett. 45, 302 (2000).
52.Ishikawa R., Ono Y., Miyazaki Y., and Kajitani T.: Low-temperature synthesis and electric properties of new layered cobaltite, SrxCoO2. Jpn. J. Appl. Phys. 41(Part 2), L337 (2002).
53.Ohtaki M., Tsubota T., Eguchi K., and Arai H.: High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).
54.Tsubota T., Ohtaki M., Eguchi K., and Arai H.: Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).
55.Katsuyama S., Takagi Y., Ito M., Majima K., Nagai H., Sakai H., Yoshimura K., and Kosuge K.: Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 92, 1391 (2002).
56.Ohtaki M., Araki K., and Yamamoto K.: High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234 (2009).
57.Ohta H., Seo W.S., and Koumoto K.: Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).
58.Koc R. and Anderson H.U.: Electrical conductivity and Seebeck coefficient of (La, Ca)(Cr, Co)O3. J. Mater. Sci. 27, 5477 (1992).
59.Wood C. and Emin: D.Conduction mechanism in boron carbide. Phys. Rev. B 29, 4582 (1984).
60.Ohta H., Mizutani A., Sugiura K., Hirano M., Hosono H., and Koumoto K.: Surface modification of glass substrate for oxide heteroepitaxy: Pastable three-dimensionally oriented layered oxide thin film. Adv. Mater. 18, 1649 (2006).
61.Sugiura K., Ohta H., Nomura K., Hirano M., Hosono H., and Koumoto K.: High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006).
62.Sugiura K., Ohta H., Nomura K., Saito T., Ikuhara Y., Hirano M., Hosono H., and Koumoto K.: Thermoelectric properties of the layer cobaltite Ca3Co4O9 epitaxial filmsfabricated by topotactic ion-exchange method. Mater. Trans. 48, 2104 (2007).
63.Ohta S., Nomura T., Ohta H., Hirano M., Hosono H., and Koumoto K.: Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 092108 (2005).
64.Kurita D., Ohta S., Sugiura K., Ohta H., and Koumoto K.: Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006).
65.Lee K.H., Ishizaki A., Kim S.W., Ohta H., and Koumoto K.: Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007).
66.Ohta H., Nomura K., Orita M., Hirano M., Ueda K., Suzuki T., Ikuhara Y., and Hosono H.: Single-crystalline films of InGaO3(ZnO)m (m=integer) homologous phase grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 13, 139 (2003).
67.Dismukes J.P., Ekstrom L., Steigmeier E.F., Kudman I., and Beers D.S.: Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).
68.Ishiwata S., Terasaki I., Kusano Y., and Takano M.: Transport properties of misfit-layered cobalt oxide [Sr2O2-δ]0.53CoO2. J. Phys. Soc. Jpn. 75, 104716 (2006).
69.Kato K., Yamamoto M., Ohta S., Muta H., Kurosaki K., Yamanaka S., Iwasaki H., Ohta H., and Koumoto K.: The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3. J. Appl. Phys. 102, 116107 (2007).
70.Muta H., Ieda A., Kurosaki K., and Yamanaka S.: Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).
71.Yamamoto M., Ohta H., and Koumoto K.: Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system. Appl. Phys. Lett. 90, 072101 (2007).
72.Ohta H., Kim S.W., Mune Y., Mizoguchi T., Nomura K., Ohta S., Nomura T., Nakanishi Y., Ikuhara Y., Hirano M., Hosono H., and Koumoto K.: Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007).
73.Mune Y., Ohta H., Koumoto K., Mizoguchi T., and Ikuhara Y.: Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007).
74.Lee K. H., Mune Y., Ohta H., and Koumoto K.: Thermal stability of giant thermoelectric Seebeck coefficient for SrTiO3/SrTi0.8Nb0.2O3 superlattices at 900 K. Appl. Phys. Express. 1, 015007 (2008).
75.Daude N., Gout C., and Jouanin C.: Electronic band structure of titanium dioxide. Phys. Rev. B 15, 3229 (1977).
76.Ohta H., Huang R., and Ikuhara Y.: Large enhancement of the thermoelectrics Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers. Phys. Status Solidi RRL 2, 105 (2008).
77.Hicks L.D. and Dresselhaus M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).
78.By low dimensional, we mean that the system size in one or more directions is comparable with the wavelength or the mean free path of a quantum particle or an excitation.
79.Hicks L.D., Harman T.C., Sun X., and Dresselhaus M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, 10493 (1996).
80.Heremans J.P.: Low-dimensional thermoelectricity. Acta Physiol. Pol. 108, 609 (2005).
81.Pichanusakorn P. and Bandaru P.: Nanostructured thermoelectrics. Mater. Sci. Eng., R 67, 19 (2010).
82.We hereafter use the generic term “nanostructured material” to represent the low-dimensional systems and the nanocomposites in view of that classical and quantum-size effects in these systems are basically the same.
83.Hochbaum A.I., Chen R., Delgado R.D., Liang W., Garnett E.C., Najarian M., Marjumdar A., and Yang P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
84.Bouake A.I., Bunimovich Y., Tahir-Kheli J., Yu J.K., Goddard W.A. III, and Heath J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
85.Yang R. and Chen G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).
86.Dresselhaus M.S., Chen G., Tang M.Y., Yang R., Lee H., Wang D., Ren Z., Fleurial J.-P., and Gogna P.: New direction for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).
87.Medlin D.L. and Snyder G.J.: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).
88.Bergman D.J. and Levy O.: Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 6821 (1991).
89.Zide J.M.O., Vashaee D., Bian Z.X., Zeng G.H., Bowers J.E., and Shakouri A.: Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).
90.Zebarjadi M., Esfarjani K., Shakouri S., Bian Z.X., Bahk J.H., and Zeng G.H.: Effect of nanoparticles on electron and thermoelectric transport. J. Electron. Mater. 38, 954 (2009).
91.Li D., Wu Y., and Fan R., Yang P., and Marjumdar A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003).
92.Kim W., Zide J., Gossard A., Klenov D., Stemmer S., Shakouri A., and Marjumdar A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).
93.Joshi G., Lee H., Lan Y., Wang X., Zhu G., Wang D., Gould R.W., Cuff D.C., Tang M.Y., Dresselhaus M.S., Chen G., and Ren Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).
94.Chiritescu C., Cahill D.G., Nguyen N., Johnson D., Bodapati A., Keblinski P., and Zschack P.: Ultra low thermal conductivity in disordered layer WSe2 crystals. Science 315, 351 (2006).
95.Snyder G.J. and Toberer E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
96.Cahill D.G., Watson S.K., and Pohl R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).
97.Watanabe A., Fukui T., Nogi K., Kizaki Y., Noguchi Y., and Miyayama M.: High-quality lead-free ferroelectric ceramics prepared from flash-creating-method-derived nanopowder. J. Ceram. Soc. Jpn. 114, 97 (2006).
98.Zhao X.Y., Shi X., Chen L.D., Zhang W.Q., Bai S.Q., Pei Y.Z., and Li X.Y.: Synthesis of YbyCo4Sb12/Y2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).
99.Alleno E., Chen L., Chubilleau C., Lenoir B., Rouleau O., Trichet M.F., and Villeroy B.: Thermal conductivity reduction in CoSb2-CeO2 nanocomposites. J. Electron. Mater. 39, 1966 (2010).
100.He Z., Stiewe C., Platzek D., Karpinski G., Muller E., Li S., Torpak M., and Muhammed M.: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).
101.Berardan D., Guilmeau E., Maignan A., and Raveau B.: In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 146, 97 (2008).
102.Wang N., Han L., Ba Y., Wang Y., Wan C., Fujinami K., and Koumoto K.: Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 39, 1777 (2010).
103.Wang N., Han L., He H., Ba Y., and Koumoto K.: Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J. Alloy. Comp. 497, 308 (2010).
104.Wang N., He H., Ba Y., Wan C., and Koumoto K.: Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098 (2010).
105.Sootsman J.R., Chung D.Y., and Kanatzidis M.G.: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616 (2009).
106.Yeo S., Horibe Y., Mori S., Tseng C.M., Chen C.H., Khachaturyan A.G., Zhang C.L., and Cheong S.-W.: Solid-state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).
107.Kosuga A., Kurosaki K., Yubuta K., Charoenphakdee A., Yamanaka S., and Funahashi R.: Thermal conductivity characterization in bulk Zn(Mn, Ga)O4 with self-assembled nanocheckerboard structures. Jpn. J. Appl. Phys. 48, 010201 (2009).
108.Hashin Z. and Shtrikman S.: On some variational principles in anisotropic and non-homogeneous elasticity. J. Mech. Phys. Solids 10, 335 (1962).
109.Hashin Z. and Shtrikman S.: Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solids 10, 343 (1962).
110.Matsubara I., Funahashi R., Takeuchi T., Sodeoka S., Shimizu T., and Ueno K.: Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett. 78, 3627 (2001).
111.Shin W., Murayama N., Ikeda K., and Sago S.: Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).
112.Funahashi R., Urata S., Mizuno K., Kouuchi T., and Mikami M.: Ca2.7Bi0.3Co4O9-La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).
113.Urata S., Funahashi R., Mihara T., Kosuga A., Sodeoka S., and Tanaka T.: Power generation of a p-Type Ca3Co4O9/n-type CaMnO3 module. Int. J. Appl. Ceram. Technol. 4, 535 (2007).
114.Uchida K., Xiao J., Adachi H., Ohe J., Takahashi S., Leda J., Ota T., Kajiwara Y., Umezawa U., Kawai H., Bauer G.E.W., Maekawa S., and Saitoh E.: Spin Seebeck insulator. Nat. Mater. 9, 894 (2010).
115.Humphery T.E. and Linke K.: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).
116.Funanashi R., Mikami M., Urata S., Kitawaki M., Kouuchi T., and Mizuno K.: High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16, 70 (2005).
117.Kihou K., Lee C.H., Miyazawa K., Shirage P.M., Iyo A., and Eisaki H.: Thermoelectric properties of LaFeAsO1-y at low temperature. J. Appl. Phys. 108, 033703 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 11
Total number of PDF views: 411 *
Loading metrics...

Abstract views

Total abstract views: 1053 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.