Skip to main content
×
×
Home

Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals

  • Luis M. Martinez (a1), Chinnathambi Karthik (a2), Madhu Kongara (a3) and Srinivasa Rao Singamaneni (a1)
Abstract

In the recent past, two-dimensional (2D) nanocrystalline (NC) transition metal dichalcogenides such as MoS2 received a great deal of attention due to their extraordinary physical properties. There has been a great interest to study the defects present in MoS2 NCs, which alter the material’s catalytic, electrical, and magnetic properties. This work reports paramagnetic point defects present in the hydrothermally grown 2H–MoS2 NCs. X-band electron spin resonance (ESR) spectroscopy has been used to identify the defects which contain unpaired electron spins in the as-prepared and Ar-annealed MoS2 NCs. At least seven ESR signals were detected originating from four inequivalent paramagnetic defect sites such as adsorbed oxygen species, sulfur vacancies, thio-, and oxo-Mo5+. Upon Ar-annealing, most of these defects did not survive, instead conduction ESR signal was observed. This work signifies the importance of employing ESR spectroscopy and broadens the knowledge in identifying the atomic defects in MoS2 NCs.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: srao@utep.edu
References
Hide All
1.Kibsgaard, J., Chen, Z., Reinecke, B.N., and Jaramillo, T.F.: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012).
2.Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007).
3.Yu, Y., Huang, S-Y., Li, Y., Steinmann, S.N., Yang, W., and Cao, L.: Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553 (2014).
4.Hinnemann, B., Moses, P.G., Bonde, J.L., Jørgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., and Nørskov, J.K.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308 (2005).
5.Wang, H., Tsai, C., Kong, D., Chan, K., Abild-Pedersen, F., Nørskov, J.K., and Cui, Y.: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 566 (2015).
6.Liu, G., Robertson, A.W., Li, M.M-J., Kuo, W.C.H., Darby, M.T., Muhieddine, M.H., Lin, Y-C., Suenaga, K., Stamatakis, M., Warner, J.H., and Tsang, S.C.E.: MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810 (2017).
7.Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., and Shan, J.: Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207 (2013).
8.Feng, J., Qian, X., Huang, C-W., and Li, J.: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866 (2012).
9.Wilcoxon, J.P., Newcomer, P.P., and Samaraa, G.A.: Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J. Appl. Phys. 81, 7934 (1997).
10.Park, J.W., Seob So, H., Kim, S., Choi, S-H., Lee, H., Lee, J., Lee, C., and Kim, Y.: Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. J. Appl. Phys. 116, 183509 (2014).
11.Addou, R., McDonnell, S., Barrera, D., Guo, Z., Azcatl, A., Wang, J., Zhu, H., Hinkle, C.L., Q-Lopez, M., Alshareef, H.N., Colombo, L., Hsu, J.W.P., and Wallace, R.M.: Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. ACS Nano 9, 9124 (2015).
12.Tsai, C., Pedersen, F.A., and Nørskov, J.K.: Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 13811387 (2014).
13.Li, G., Zhang, D., Qiao, Q., Yu, Y., Peterson, D., Zafar, A., Kumar, R., Curtarolo, S., Hunte, F., Shannon, S., Zhu, Y., Yang, W., and Cao, L.: All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632 (2016).
14.Yin, Y., Han, J., Zhang, Y., Zhang, X., Xu, P., Yuan, Q., Samad, L., Wang, X., Wang, Y., Zhang, Z., Zhang, P., Cao, X., Song, B., and Jin, S.: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 79657 (2016).
15.Gao, D., Si, M., Li, J., Zhang, J., Zhang, Z., Yang, Z., and Xue, D.: Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 8, 129 (2013).
16.Zhang, R., Li, Y., Qi, J., and Gao, D.: Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Res. Lett. 9, 586 (2014).
17.Cai, L., He, J., Liu, Q., Yao, T., Chen, L., Yan, W., Hu, F., Jiang, Y., Zhao, Y., Hu, T., Sun, Z., and Wei, S.: Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622 (2015).
18.Lu, S-C. and Leburton, J-P.: Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 9, 676 (2014).
19.Azizi, A., Wang, Y., Lin, Z., Wang, K., Elias, A.L., Terrones, M., Crespi, V.H., and Alem, N.: Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers. Nano Lett. 16, 6982 (2016).
20.Azizi, A., Eichfeld, S., Geschwind, G., Zhang, K., Jiang, B., Mukherjee, D., Hossain, L., Piasecki, A.F., Kabius, B., Robinson, J.A., and Alem, N.: Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano 9, 4882 (2015).
21.Hong, J., Jin, C., Yuan, J., and Zhang, Z.: Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017).
22.Rao, S.S., Stesmans, A., Novyen, J.V., Jacobs, P., and Sels, B.: ESR investigations of ultra-small double walled carbon nanotubes embedded in zeolite nanochannels. J. Phys.: Condens. Matter 23, 455801 (2011).
23.Rao, S.S., Stesmans, A., Keunen, K., Kosynkin, D.V., Higginbotham, A., and Tour, J.M.: Unzipped graphene nanoribbons as ‘sensitive O2 sensors’—Electron spin resonance probing and dissociation kinetics. Appl. Phys. Lett. 98, 083116 (2011).
24.Rao, S.S., Stesmans, A., van Tol, J., Kosynkin, D.V., and Tour, J.M.: Magnetic defects in chemically converted graphene nanoribbons: Electron spin resonance investigation. AIP Adv. 4, 047104 (2014).
25.Rao, S.S., Stesmans, A., van Tol, J., Kosynkin, D.V., Higginbotham-Duque, A., Lu, W., Sinitskii, A., and Tour, J.M.: Spin dynamics and relaxation in graphene nanoribbons: Electron spin resonance probing. ACS Nano 6, 7615 (2012).
26.Rao, S.S., Narayana Jammalamadaka, S., Stesmans, A., Moshchalkov, V.V., van Tol, J., Kosynkin, D.V., Higginbotham, A., and Tour, J.M.: Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 12, 1210 (2012).
27.Singamaneni, S.R., van Tol, J., Ye, R., and Tour, J.M.: Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots. Appl. Phys. Lett. 107, 212402 (2015).
28.Panich, A.M., Shames, A.I., Rosentsveig, R., and Tenne, R.: A magnetic resonance study of MoS2 fullerene-like nanoparticles. J. Phys.: Condens. Matter, 21, 395301 (2009).
29.Stesmans, A., Iacovo, S., Chiappe, D., Radu, I., Huyghebaert, C., De Gendt, S., and Afanas’ev, V.V.: Paramagnetic intrinsic defects in polycrystalline large-area 2D MoS2 films grown on SiO2 by Mo sulfurization. Nanoscale Res. Lett. 12, 283 (2017).
30.Arcon, D., Zorko, A., Cevc, P., Mrzel, A., Remškar, M., Dominko, R., Gaberšček, M., and Mihailovic, D.: Electron spin resonance of doped chalcogenide nanotubes. Phys. Rev. B 67, 125423 (2003).
31.Khulber, K.C., Mann, S., and Ternan, M.: Electron spin resonance studies of the surface chemistry of molybdenum-alumina catalysts. Can. J. Chem. 56, 1769 (1978).
32.Silbernagel, B.G., Pecoraro, T.A., and Chianelli, R.R.: Electron spin resonance of supported and unsupported molybdenum hydrotreating catalysts. J. Catal. 78, 380 (1982).
33.Bensimon, Y., Belougne, P., Giuntini, J.C., and Zanchetta, J.V.: Electron spin resonance of water adsorption on amorphous molybdenum sulfide. J. Phys. Chem. 88, 2754 (1984).
34.Deroide, B., Bensimon, Y., Belougne, P., and Zanchetta, J.V.: Lineshapes of ESR signals and the nature of paramagnetic species in amorphous molybdenum sulfides. J. Phys. Chem. Solids 52, 853 (1991); J. Non-Cryst Solids 149, 218 (1992).
35.Louis, C. and Che, M.: EPR investigation of the coordination sphere of Mo5+ ions on thermally reduced silica-supported molybdenum catalysts prepared by the grafting method. J. Phys. Chem. 91, 2875 (1987).
36.Gu, W., Yan, Y., Zhang, C., Ding, C., and Xian, Y.: One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection, ACS Appl. Mater. Interfaces, 8, 1127211279 (2016).
37.Liang, X., Zhang, X., Liu, W., Tang, D., Zhang, B., and Ji, G., A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance, J. Mater. Chem. C 4, 68166821 (2016).
38.Rao, S.S., Anuradha, K.N., Sarangi, S., and Bhat, S.V.: Weakening of charge order and anti ferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005).
39.Anuradha, K.N., Rao, S.S., and Bhat, S.V.: Complete melting of charge order in hydrothermally grown Pr0.57Ca0.41 Ba0.02MnO3 nanowires. J. Nanosci. Nanotechnol. 7, 1775 (2007).
40.Ojha, K., Saha, S., Banerjee, S., and Ganguli, A.K.: Efficient electrocatalytic hydrogen evolution from MoS2-functionalized Mo2N nanostructures. ACS Appl. Mater. Interfaces 9, 19455 (2017).
41.Spevack, P.A. and Mclntyre, N.S.: A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide. J. Phys. Chem. 97, 11031 (1993).
42.Zhang, W., Zhou, T., Zheng, J., Hong, J., Pan, Y., and Xu, R.: Water-soluble MoS3 nanoparticles for photocatalytic H2 evolution. ChemSusChem 8, 1464 (2015).
43.Spevack, P.A. and Mclntyre, N.S.: A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 97, 11020 (1993).
44.Chiappe, D., Asselberghs, I., Sutar, S., Iacovo, S., Afanas’ev, V., Stesmans, A., Balaji, Y., Peters, L., Heyne, M., Mannarino, M., Vandervorst, W., Sayan, S., Huyghebaert, C., Caymax, M., Heyns, M., De Gendt, S., Radu, I., and Thean, A.: Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv. Mater. Interfaces 3, 1500635 (2016).
45.Spackman, J.W.C.: Electron spin resonance of charge carriers in impure molybdenum disulphide. Nature 198, 1266 (1963).
46.Brand, F.D., Ribeiro, G.M., Vaz, P.H., González, J.C., and Krambrock, K.: Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples. J. Appl. Phys. 119, 235701 (2016).
47.Stesmans, A., Iacovo, S., and Afanas’ev, V.V.: ESR study of p-type natural 2H-polytype MoS2 crystals: The as acceptor activity. Appl. Phys. Lett. 109, 172104 (2016).
48.Konings, A.J.A., van Doormen, A.M., Koningsberger, D.C., De Beer, V.H.J., Farragher, A.L., and Schuit, G.C.A.: ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts. J. Catal. 54, 1 (1978).
49.Khulbe, K.C., Mann, R.S., and Ternan, M.: Electron spin resonance of the surface chemistry of molybdenum-alumina catalysts, CAN. J. Chem. 56, 1769 (1978).
50.Sobczynski, A. and Zmierczak, W.: Characterization of MoS2/SiO2 by ESR and no absorption. React. Kinet. Catal. Lett. 44, 511 (1991).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Martinez et al. supplementary material
Figures S1-S7

 Word (2.6 MB)
2.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed