Skip to main content
×
×
Home

Paulownia tomentosa derived porous carbon with enhanced sodium storage

  • Pan Wang (a1), Xiaojia Li (a1), Xifei Li (a2), Hui Shan (a3), Dejun Li (a4) and Xueliang Sun (a5)...
Abstract

Porous carbon derived from biomass materials with enrich, low cost, clean, and renewable merits, exhibits various physical and chemical properties. So, it is of great significance to rationally utilize biomass materials for producing porous carbon with low cost to reduce overusing fossil fuel and environmental pollution. In this report, porous carbon has been fabricated using fruits shells of the Paulownia tomentosa by a facile method of KOH-activation. The as-obtained porous carbon containing a larger number of micropores and slight mesopores possesses a high specific surface area (1914.4 m2/g) and well hierarchical porosity. As the anode for sodium ion batteries, the porous carbon sample displays superior cycling stability and rate capability, delivering a reversible specific capacity of 179 mA h/g at 50 mA/g after 100 cycles and a discharge specific capacity of 100 mA h/g at 1 A/g.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: xfli2011@hotmail.com
b)e-mail: dli1961@126.com
c)e-mail: xsun9@uwo.ca
Footnotes
Hide All

Contributing Editor: Teng Zhai

Footnotes
References
Hide All
1.Liu, P., Li, Y., Hu, Y-S., Li, H., Chen, L., and Huang, X.: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 4(34), 13046 (2016).
2.Nishi, Y.: Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 100(1), 101 (2001).
3.Qin, D. and Chen, S.: A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. J. Solid State Electrochem. 21(5), 1305 (2017).
4.Fan, L., Li, X., Yan, B., Feng, J., Xiong, D., Li, D., Gu, L., Wen, Y., Lawes, S., and Sun, X.: Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 6(10), 1502057 (2016).
5.Li, X., Li, X., Fan, L., Yu, Z., Yan, B., Xiong, D., Song, X., Li, S., Adair, K.R., Li, D., and Sun, X.: Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries. Appl. Surf. Sci. 412(Suppl. C), 170 (2017).
6.Song, X., Li, X., Bai, Z., Yan, B., Li, D., and Sun, X.: Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 26(Suppl. C), 533 (2016).
7.Palomares, V., Serras, P., Villaluenga, I., Hueso, K., Gonzalez, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost. Energy Storage Syst. 5(3), 58845901 (2012).
8.Zhang, S., Zhang, J., Wu, S., Lv, W., Kang, F., and Yuan, C.: Research advances of carbon-based anode materials for sodium-ion batteries. Acta Chim. Sin. 75(2), 163 (2017).
9.Gaddam, R.R., Yang, D., Narayan, R., Raju, K., Kumar, N.A., and Zhao, X.S.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26(Suppl. C), 346 (2016).
10.Kalyani, P. and Anitha, A.: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 38(10), 4034 (2013).
11.Rana, M., Subramani, K., Sathish, M., and Gautam, U.K.: Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon 114, 679 (2017).
12.De, S., Balu, A.M., van der Waal, J.C., and Luque, R.: Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem 7(11), 1608 (2015).
13.Wang, H., Yu, W., Shi, J., Mao, N., Chen, S., and Liu, W.: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim. Acta 188, 103 (2016).
14.Varma, H., Avinesh, , Narasimman, R., and Prabhakaran, K.: Preparation and characterization of hierarchical porous carbon by a hard-template. Mater. Sci. Forum 830–831, 585 (2015).
15.Zhao, S., Li, C., Wang, W., Zhang, H., Gao, M., Xiong, X., Wang, A., Yuan, K., Huang, Y., and Wang, F.: A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J. Mater. Chem. A 1(10), 3334 (2013).
16.Chen, W., Zhang, H., Huang, Y., and Wang, W.: A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20(23), 4773 (2010).
17.Guo, C., Hu, R., Liao, W., Li, Z., Sun, L., Shi, D., Li, Y., and Chen, C.: Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim. Acta 236, 228 (2017).
18.Ru, H., Xiang, K., Zhou, W., Zhu, Y., Zhao, X.S., and Chen, H.: Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochim. Acta 222, 551 (2016).
19.Yu, X., Wang, Y., Li, L., Li, H., and Shang, Y.: Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci. Rep. 7, 45378 (2017).
20.Cai, Y., Luo, Y., Dong, H., Zhao, X., Xiao, Y., Liang, Y., Hu, H., Liu, Y., and Zheng, M.: Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors. J. Power Sources 353, 260 (2017).
21.Gong, Y., Li, D., Luo, C., Fu, Q., and Pan, C.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132 (2017).
22.Huang, W., Zhang, H., Huang, Y., Wang, W., and Wei, S.: Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3), 838 (2011).
23.Ke, Y-H., Yang, E-T., Liu, X., Liu, C-L., and Dong, W-S.: Preparation of porous carbons from non-metallic fractions of waste printed circuit boards by chemical and physical activation. Carbon 60(Suppl. C), 563 (2013).
24.Imtiaz, S., Zhang, J., Zafar, Z.A., Ji, S., Huang, T., Anderson, J.A., Zhang, Z., and Huang, Y.: Biomass-derived nanostructured porous carbons for lithium–sulfur batteries. Sci. China Mater. 59(5), 389 (2016).
25.Wang, J. and Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710 (2012).
26.Lozano-Castelló, D., Calo, J.M., Cazorla-Amorós, D., and Linares-Solano, A.: Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45(13), 2529 (2007).
27.Otowa, T., Tanibata, R., and Itoh, M.: Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep. Purif. 7(4), 241 (1993).
28.Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 929 (2015).
29.Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., and Machnikowski, J.: Erratum to “Electrochemical capacitors based on highly porous carbons prepared by KOH activation”. Electrochim. Acta 49(7), 1169 (2004).
30.Ye, H., Yin, Y-X., Xin, S., and Guo, Y-G.: Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. J. Mater. Chem. A 1(22), 6602 (2013).
31.Ou, J., Yang, L., Zhang, Z., and Xi, X.: Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater. 237, 23 (2017).
32.Xiong, D., Li, X., Bai, Z., Shan, H., Fan, L., Wu, C., Li, D., and Lu, S.: Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces 9(12), 10643 (2017).
33.Shi, X., Zhang, Z., Fu, Y., and Gan, Y.: Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 161, 332 (2015).
34.Deheryan, S., Cott, D.J., Mertens, P.W., Heyns, M., and Vereecken, P.M.: Direct correlation between the measured electrochemical capacitance, wettability and surface functional groups of carbon nanosheets. Electrochim. Acta 132, 574 (2014).
35.Ou, J., Yang, L., and Xi, X.: Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance. Electron. Mater. Lett. 13(1), 66 (2016).
36.Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitor. Nat. Mater. 7(11), 845854 (2008).
37.Liu, H., Jia, M., Sun, N., Cao, B., Chen, R., Zhu, Q., Wu, F., Qiao, N., and Xu, B.: Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(49), 27124 (2015).
38.Qiao, Z.J., Chen, M.M., Wang, C.Y., and Yuan, Y.C.: Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresour. Technol. 163, 386 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Word (2.2 MB)
2.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed