Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T05:50:34.539Z Has data issue: false hasContentIssue false

PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials

Published online by Cambridge University Press:  27 September 2019

Yatir Sadia*
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Dana Ben-Ayoun
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Yaniv Gelbstein
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
*
a)Address all correspondence to this author. e-mail: yatir@bgu.ac.il
Get access

Abstract

In the recent years, there has been high interest in renewable energy and highly efficient devices, promoted by the need to stop changing weather patterns. One of the most interesting methods for this is using thermoelectric materials, which are low cost and highly durable. However, the need for higher efficiency values and a higher resistance to oxidation leads to a technological problem in the field of coating. Due to its diverse properties, glass coating has been proposed as a solution to both sublimation of the thermoelectric materials and oxidation. Lead silicate glasses with 30% PbO were doped with 0–5% of Na2O and B2O3 to produce glasses with different properties. Differential scanning calorimetry and dilatometry measurements showed that the glass temperature can vary between 428 and 505 °C. The softening temperature is varied between 493 and 560 °C. Below Tg, the coefficient of thermal expansion is varied between 5.9 and 9 ppm/K and above Tg it varied between 17 and 58 ppm/K. This allows the tuning of the glass composition for each thermoelectric material, such as 0.5% B and 1% Na doped PbO -SiO2 glass for skutterudites and 1% doped B and 1% Na doped for Mg2Si, PbTe, and GeTe.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rowe, D.M.: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Florida, 1995); pp. 2138.CrossRefGoogle Scholar
Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., and Hang, H.H.: p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010).CrossRefGoogle Scholar
Yan, X., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y., Wang, D., Chen, G., and Ren, Z.F.: Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 10, 33733378 (2010).CrossRefGoogle ScholarPubMed
Gelbstein, Y., Davidow, J., Girard, S.N., Chung, D.Y., and Kanatzidis, M.: Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 3, 815820 (2013).10.1002/aenm.201200970CrossRefGoogle Scholar
Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., and Kanatzidis, M.G.: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160 (2011).CrossRefGoogle ScholarPubMed
Li, H., Tang, X., Zhang, Q., and Uher, C.: Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. Appl. Phys. Lett. 93, 252109 (2008).CrossRefGoogle Scholar
Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q., and Uher, C.: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).CrossRefGoogle Scholar
Yang, J. and Caillat, T.: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224229 (2006).CrossRefGoogle Scholar
Li, C.C. and Kao, C.R.: Contacts for PbTe. In Advanced Thermoelectrics, Z. Ren, Y. Lan, and Q. Zhang, eds. (CRC Press, Boca Raton, Florida, 2017); pp. 635658.CrossRefGoogle Scholar
Aswal, D.K., Basu, R., and Singh, A.: Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manage. 114, 5067 (2016).CrossRefGoogle Scholar
Liu, W., Jie, Q., Kim, H.S., and Ren, Z.: Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 87, 357376 (2015).CrossRefGoogle Scholar
Wang, Z.L., Araki, T., Onda, T., and Chen, Z.C.: Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. J. Mater. Sci. 53, 91179130 (2018).CrossRefGoogle Scholar
Sadia, Y., Ohaion-Raz, T., Ben-Yehuda, O., Korngold, M., and Gelbstein, Y.: Criteria for extending the operation periods of thermoelectric converters based on IV–VI compounds. J. Solid State Chem. 241, 7985 (2016).CrossRefGoogle Scholar
Zhang, L., Wang, W., Ren, B., and Guo, J.: The effect of adding nano-Bi2Te3 on properties of GeTe-based thermoelectric material. J. Electron. Mater. 42, 13031306 (2013).CrossRefGoogle Scholar
Case, E.D.: Thermo-mechanical properties of thermoelectric materials. Thermoelectrics and its energy harvesting. In Modules, Systems, and Applications , D.M. Rowe, ed. (CRC Press, Boca Raton, Florida, 2012); p. 581.Google Scholar
Zhao, D., Tian, C., Liu, Y., Zhan, C., and Chen, L.: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J. Alloys Compd. 509, 31663171 (2011).CrossRefGoogle Scholar
Bux, S.K., Yeung, M.T., Toberer, E.S., Snyder, G.J., Kaner, R.B., and Fleurial, J.P.: Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J. Mater. Chem. 21, 1225912266 (2011).CrossRefGoogle Scholar
Imai, M., Isoda, Y., and Udono, H.: Thermal expansion of semiconducting silicides β-FeSi2 and Mg2Si. Intermetallics 67, 7580 (2015).CrossRefGoogle Scholar
Park, S.H., Kim, Y., and Yoo, C.Y.: Oxidation suppression characteristics of the YSZ coating on Mg2Si thermoelectric legs. Ceram. Int. 42, 1027910288 (2016).CrossRefGoogle Scholar
Nieroda, P., Mars, K., Nieroda, J., Leszczyński, J., Król, M., Drożdż, E., Jeleń, P., Sitarz, M., and Koleżyński, A.: New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram. Int. 45, 1023010235 (2019).CrossRefGoogle Scholar
Leszczyński, J., Nieroda, P., Nieroda, J., Zybała, R., Król, M., Łącz, A., Kaszyca, K., Mikuła, A., Schmidt, M., Sitarz, M., and Koleżyński, A.: Si–O–C amorphous coatings for high temperature protection of In0.4Co4Sb12 skutterudite for thermoelectric applications. J. Appl. Phys. 125, 215113 (2019).CrossRefGoogle Scholar
Brostow, W., Datashvili, T., Hagg Lobland, H.E., Hilbig, T., Su, L., Vinado, C., and White, J.B.: Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects. J. Mater. Res. 27, 2930 (2012).CrossRefGoogle Scholar
Brostow, W., Chang, J., Hagg Lobland, H.E., Perez, J.M., Shipley, S., Wahrmund, J., and White, J.B.: Rheological characterization of molten polymers containing ceramic nanopowders for use in thermoelectric devices. J. Nanosci. Nanotechnol. 15, 6604 (2015).CrossRefGoogle Scholar
Brostow, W., Chen, I.K., and White, J.B.: Effects of polymeric coatings on service life of bismuth telluride-based thermoelectric materials. Sustain. Energy Fuels 1, 1376 (2017).CrossRefGoogle Scholar
El-Genk, M.S., Saber, H.H., Caillat, T., and Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manage. 47, 174200 (2006).CrossRefGoogle Scholar
Kohara, S., Ohno, H., Takata, M., Usuki, T., Morita, H., Suzuya, K., Akola, J., and Pusztai, L.: Lead silicate glasses: Binary network-former glasses with large amounts of free volume. Phys. Rev. B 82, 134209 (2010).CrossRefGoogle Scholar
Kacem, I.B., Gautron, L., Coillot, D., and Neuville, D.R.: Structure and properties of lead silicate glasses and melts. Chem. Geol. 461, 104114 (2017).CrossRefGoogle Scholar
Bair, G.J.: II, The correlation of physical properties with atomic arrangement. J. Am. Ceram. Soc. 19, 347358 (1936).CrossRefGoogle Scholar
Gee, I.A., Holland, D., and McConville, C.F.: Atomic environments in binary lead silicate and ternary alkali lead silicate glasses. Phys. Chem. Glasses 42, 339348 (2001).Google Scholar
Shelby, J.E.: Properties/structure relationships in lead silicate glasses. Glastech. Ber. 56, 10571062 (1983).Google Scholar
Greenough, R.D., Dentschuk, P., and Palmer, S.B.: Thermal expansion of lead silicate glasses. J. Mater. Sci. 16, 599603 (1981).CrossRefGoogle Scholar
Geller, R.F., Creamer, A.S., and Bunting, E.N.: The system PbO–SiO2. J. Res. Natl. Bur. Stand 13, 237244 (1934).Google Scholar
Agote, I., Lagos, M.A., Tunbridge, J., Dixon, R., Reece, M., Ning, H., Gilchrist, R., Summers, R., Gelbstein, Y., Simpson, K., and Rouaud, C.: PM functional materials: Thermoelectric materials for automotive and marine applications. In European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings (The European Powder Metallurgy Association, Shropshire, UK., 2014); p. 1.Google Scholar
Zachariasen, W.H.: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 38413851 (1932).CrossRefGoogle Scholar
Sakka, S. and Mackenzie, J.D.: Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J. Non-Cryst. Solids 6, 145162 (1971).CrossRefGoogle Scholar
Shelby, J.E.: Thermal expansion of mixed-alkali silicate glasses. J. Appl. Phys. 47, 44894496 (1976).CrossRefGoogle Scholar
Jabra, R., Phalippou, J., and Zarzycki, J.: Synthesis and characterization of glasses from SiO2–B2O3 system obtained by hot-pressing of gels. Rev. Chim. Miner. 16, 245266 (1979).Google Scholar
Mocioiu, O.C., Zaharescu, M., Atkinson, I., Mocioiu, A.M., and Budrugeac, P.: Study of crystallization process of soda lead silicate glasses by thermal and spectroscopic methods. J. Therm. Anal. Calorim. 117, 131139 (2014).CrossRefGoogle Scholar
Kobayashi, K.: DTA and MOS characteristics for PbO–B2O3–SiO2–GeO2 passivation glasses. J. Non-Cryst. Solids 109, 277279 (1989).CrossRefGoogle Scholar
Khanna, A., Saini, A., Chen, B., González, F., and Ortiz, B.: Structural characterization of PbO–B2O3–SiO2 glasses. Glass Technol.: Eur. J. Glass Sci. Technol., Part B 55, 6573 (2014).Google Scholar
Sudarsan, V., Shrikhande, V.K., Kothiyal, G.P., and Kulshreshtha, S.K.: Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses. J. Phys.: Condens. Matter 14, 6553 (2002).Google Scholar
Tse, J.S., Wang, X.D., Jiang, D.T., Chen, N., and Jiang, J.Z.: High energy synchrotron X-ray diffraction study of lead oxide silicate glasses at the Canadian light source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 626, 144146 (2011).CrossRefGoogle Scholar
Bair, G.J.: The constitution of lead oxide-silica glasses: I, atomic arrangement. J. Am. Ceram. Soc. 19, 339347 (1936).CrossRefGoogle Scholar
Karkhanavala, M.D. and Hummel, F.A.: Thermal expansion of some simple glasses. J. Am. Ceram. Soc. 35, 215219 (1952).CrossRefGoogle Scholar
Fluegel, A.: Statistical regression modelling of glass properties—A tutorial. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 50, 2546 (2009).Google Scholar
Fluegel, A.: Thermal expansion calculation for silicate glasses at 210 °C based on a systematic analysis of global databases. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 51, 191201 (2010).Google Scholar
Angell, C.A.: Glass transition. In Encyclopedia of Materials: Science and Technology, Jürgen Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., and Veyssière, P., eds. (Elsevier, Amsterdam, Netherlands, 2004); pp. 111.Google Scholar
Fluegel, A.: Glass viscosity calculation based on a global statistical modelling approach. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 48, 1330 (2007).Google Scholar
Mazurin, O.V.: Glass properties: Compilation, evaluation, and prediction. J. Non-Cryst. Solids 351, 11031112 (2005).CrossRefGoogle Scholar
Toby, B.H. and Von Dreele, R.B.: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544549 (2013).CrossRefGoogle Scholar