Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-06T14:24:12.272Z Has data issue: false hasContentIssue false

Perovskite crystallization kinetics and dielectric properties of the PMN-PT films prepared by polymer-modified sol-gel processing

Published online by Cambridge University Press:  31 January 2011

Z.H. Du
Affiliation:
Temasek Laboratories, Nanyang Technological University, Singapore 639798; and School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
T.S. Zhang
Affiliation:
Institute of Materials Research and Engineering, Research Link, Singapore 117602
M.M. Zhu
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
J. Ma*
Affiliation:
Temasek Laboratories, Nanyang Technological University, Singapore 639798; and School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
*
a) Address all correspondence to this author. e-mail: duzehui@ntu.edu.sg
Get access

Abstract

Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT, 43% PT) thin films have been developed by modified sol-gel processing with polyvinylpyrrolidone (PVP) as a modifier and lead nitrate as a lead source. With PVP modification, perovskite phase was directly crystallized from amorphous film matrix at a temperature as low as 430 °C, and the crystallinity was significantly enhanced. Kinetics studies show that the crystallization process is controlled by heat transfer phenomena at the annealing temperatures ≤460 °C. At higher annealing temperatures (550–700 °C), it is a diffusion-controlled reaction with an activation energy of 167.7 kJ/mol, almost two times lower than that for the films without PVP modification. The promotion mechanism of perovskite crystallization by PVP addition has been discussed accordingly. The resultant films consisted of nanocrystallines and exhibited relaxor-like dielectric behavior, although the composition of the films located in normal ferroelectrics.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Pechini, M.P.: Method of preparing lead and alkaline earth titanate and niobates and coating method using the same to form a capacitor. U.S. Patent No. 3.330.697 (1967).Google Scholar
2Jia, Q.X., McCleskey, T.M., Burrell, A.K., Lin, Y., Collis, G.E., Wang, H., Li, A.D.Q., and Foltyn, S.R.: Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529 (2004).CrossRefGoogle ScholarPubMed
3Gülgün, M.A., Nguyen, M.H., and Kriven, W.M.: Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Ceram. Soc. 82, 556 (1999).CrossRefGoogle Scholar
4Lee, S.J., Benson, E.A., and Kriven, W.M.: Preparation of Portland cement compounds by poly(vinyl alcohol) solution polymerization. J. Am. Ceram. 82, 2049 (1999).CrossRefGoogle Scholar
5Lin, P., Ren, W., Wu, X.Q., Shi, P., Yan, X., and Yao, X.: Effect of poly(vinyl acetate) on structures and properties of PbZr0.52Ti0.48O3 thick films. J. Appl. Phys. 102, 084109 (2007).CrossRefGoogle Scholar
6Yao, K., Yu, S., and Tay, F.E.H.: Preparation of perovskite Pb(Zn1/3 Nb2/3)O3-based thin films from polymer-modified solution precursors. Appl. Phys. Lett. 88, 052904–1 (2006).CrossRefGoogle Scholar
7Kozuka, H., Takenaka, S., Tokita, H., and Okubayashi, M.: PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness. J. Eur. Ceram. Soc. 24, 1585 (2004).CrossRefGoogle Scholar
8Takenaka, S. and Kozuka, H.: Sol-gel preparation of single-layer, 0.75 mm thick lead zirconate titanate films from lead nitratetitanium and zirconium alkoxide solutions containing polyvinylpyrrolidone. Appl. Phys. Lett. 79, 3485 (2001).CrossRefGoogle Scholar
9Du, Z.H., Ma, J., and Zhang, T.S.: Densification of the PLZT films derived from polymer-modified solution by tailoring annealing conditions. J. Am. Ceram. Soc. 90, 815 (2007).CrossRefGoogle Scholar
10Linardos, S., Zhang, Q., and Alcock, J.R.: Preparation of sub-micron PZT particles with the sol-gel technique. J. Eur. Ceram. Soc. 26, 117 (2006).CrossRefGoogle Scholar
11Liao, M., Zhong, X.L., Wang, J.B., Yan, H.L., He, J.P., Qiao, Y., and Zhou, Y.C.: Nd-substituted bismuth titanate ferroelectric nanofibers by electrospinning. J. Cryst. Growth 304, 69 (2007).CrossRefGoogle Scholar
12Du, Z.H., Zhang, T.S., and Ma, J.: Effect of polyvinylpyrrolidone on the formation of perovskite phase and rosette-like structure in sol-gel-derived PLZT films. J. Mater. Res. 22, 2195 (2007).CrossRefGoogle Scholar
13Lu, Y. and Gao, C.: Optical limiting in lead magnesium niobate-lead titanate mutilayers. Appl. Phys. Lett. 92, 121109 (2008).CrossRefGoogle Scholar
14Park, S.E. and Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
15Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
16Kighelman, Z., Damjanovic, D., and Setter, N.: Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg1/3, Nb2/3)O3-0.1PbTiO3 thin films. J. Appl. Phys. 90, 4682 (2001).CrossRefGoogle Scholar
17Calzada, M.L., Algueró, M., Ricote, J., Santos, A., and Pardo, L.: Preliminary results on sol-gel processing of (100) oriented Pb(Mg1/3,Nb2/3)O3-PbTiO3 thin films using diol-based solutions. J. Sol-Gel Sci. Techn. 42, 331 (2007).CrossRefGoogle Scholar
18Gong, W., Li, J.F., Chu, X.C., and Li, L.T.: Texture control of sol-gel derived Pb(Mg1/3Nb2/3)O3-PbTiO3thin films using seeding layer. J. Am. Ceram. Soc. 87, 1031 (2004).CrossRefGoogle Scholar
19Hoffmann, M., Hofer, C., Schneller, T., Böttger, U., and Waser, R.: Preparation and aging behavior of chemical-solution-deposited (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films without seeding layers. J. Am. Ceram. Soc. 85, 1867 (2002).CrossRefGoogle Scholar
20Beltrán, H., Cordoncillo, E., Escribano, P., Carda, J.B., Coats, A., and West, A.R.: Sol-gel synthesis and characterization of Pb(Mg1/3Nb2/3) O3 (PMN) ferroelectric perovskite. Chem. Mater. 12, 400 (2000).CrossRefGoogle Scholar
21Park, J.H., Kang, D.H., and Yoon, K.H.: Effects of heating profiles on the orientation and dielectric properties of 0.5Pb(Mg1/3Nb2/3) O3-0.5PbTiO3 thin films by chemical solution deposition. J. Am. Ceram. Soc. 82, 2116 (1999).CrossRefGoogle Scholar
22Koo, J., Jang, J.H., and Bae, B.S.: Highly oriented (Pb, La)TiO3 thin films prepared by sol-gel process. J. Mater. Sci. 34, 5075 (1999).CrossRefGoogle Scholar
23Boudaren, C., Auffrédic, J.P., Rocherullé, P.B.B., and Louër, D.: Structure determination from powder diffraction data and thermal behaviour of layered lead nitrate oxalate hydrate, Pb2(NO3)2(C2O4).2H2O. Solid State Sci. 3, 847 (2001).CrossRefGoogle Scholar
24Beltrán, H., Cordoncillo, E., Escribano, P., Carda, J.B., Coats, A., and West, A.R.: Sol-gel synthesis and characterization of Pb(Mg1/3 Nb2/3) O3 (PMN) ferroelectric perovskite. Chem. Mater. 12, 400 (2000).CrossRefGoogle Scholar
25Kozuka, H. and Takenaka, S.: Single-step deposition of gel-derived lead zirconate titanate films: Critical thickness and gel film to ceramic film conversion. J. Am. Ceram. Soc. 85, 2696 (2002).CrossRefGoogle Scholar
26Swartz, L. and Shrout, T.K.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
27Goel, T.C., Kumar, P., James, A.R., and Prakash, C.: Processing and dielectric properties of sol-gel derived PMN-PT (68:32) thin films. J. Electroceram. 13, 503 (2004).CrossRefGoogle Scholar
28Park, J.H., Xu, F., and Trolier-McKinstry, S.: Dielectric and piezoelectric properties of sol-gel derived lead magnesium niobium titanate films with different textures. J. Appl. Phys. 89, 568 (2001).CrossRefGoogle Scholar
29Wang, Z.J., Aoki, Y., Kokawa, H., Ichiki, M., and Maeda, R.: Effect of Zr/Ti ratio on microstructure and electrical properties of lead zirconate titanate thin films derived by pulsed laser deposition. J. Electroceram. 13, 41 (2004).CrossRefGoogle Scholar
30Johnson, W.A. and Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans ALME 135, 416 (1939).Google Scholar
31Avrami, M.: Kinetics of phase change. I: General theory. J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
32Avrami, M.: Granulation, phase change, and microstructure: Kinetics of phase change III. J. Chem. Phys. 7, 177 (1941).CrossRefGoogle Scholar
33James, O.E.J., Catherine, C.H., Bonnie, L.G., Malgorzata, M.L., and Richard, E.R.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929 (1996).Google Scholar
34Lee, J.H. and Chiang, Y.M.: Pyrochlore-perovskite phase transformation in highly homogeneous (Pb,La)(Zr,Sn,Ti)O3 powders. J. Mater. Chem. 9, 3107 (1999).CrossRefGoogle Scholar
35Zhai, J. and Chen, H.: Crystallization kinetics and dielectric properties in sol-gel derived (Pb,La)(Zr,Sn,Ti)O3 ceramics. J. Appl. Phys. 94, 589 (2003).CrossRefGoogle Scholar
36Hancock, J.D. and Sharp, J.H.: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite and BaCO3. J. Am. Ceram. Soc. 55, 74 (1972).CrossRefGoogle Scholar
37Chen, S.Y., Wang, C.M., and Cheng, S.Y.: Reaction kinetics of perovskite phase formation in lead zinc magnesium niobate ceramics. J. Am. Ceram. Soc. 74, 2506 (1991).CrossRefGoogle Scholar
38Goh, G.K.L., Han, X.Q., Liew, C.P.K., and Tay, C.S.S.: Crystallinity and orientation of solution deposited anatase TiO2 films. J. Electrochem. Soc. 152, C532 (2005).CrossRefGoogle Scholar
39Gupta, S.M. and Kulkarni, A.R.: Synthesis and dielectric properties of lead magnesium niobate a review. Mater. Chem. Phys. 39, 98 (1994).CrossRefGoogle Scholar
40Lejeune, M. and Boilot, J.P.: Formation mechanism and ceramic process of the ferroelectric perovskites: Pb(Mg1/3Nb2/3)O3 and Pb (Fe1/2Nb1/2)O3. Ceram. Int. 8, 99 (1982).CrossRefGoogle Scholar
41Sung, Y.M., Kwak, W.C., and Kim, S.: Kinetics of PbTiO3 perovskite phase formation via an interfacial reaction. J. Mater. Res. 17, 407 (2002).CrossRefGoogle Scholar
42Xue, J.M., Li, C., Ni, H., and Yin, Z.: Studies on formation mechanism and kinetics process for PMN perovskite in columbite method, in 9th International Symposium on Electrets (ISE 9) (1996), p. 885.Google Scholar
43Liu, M., Yan, X., Liu, H., and Yu, W.: An investigation of the interaction between polyvinylpyrrolidone and metal cations. React. Funct. Polym. 44, 55 (2000).CrossRefGoogle Scholar
44Saegusa, T.: Organic-inorganic polymers hybrids. Pure Appl. Chem. 67, 1965 (1995).CrossRefGoogle Scholar
45Hu, S.H., Chen, S.Y., Liu, D.M., and Hsiao, C.S.: Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv. Mater. 20,(14) 2690 (2008).CrossRefGoogle Scholar
46Chou, K.S. and Chen, C.C.: Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous Mesoporous Mater. 98, 208 (2007).CrossRefGoogle Scholar
47Nagakari, S., Kamigaki, K., and Nambu, S.: Dielectric properties of sol-gel derived Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films. Jpn. J. Appl. Phys. 35, 4933 (1996).CrossRefGoogle Scholar
48Narendar, Y. and Messing, G.L.: Kinetic analysis of combustion synthesis of lead magnesium niobate from metal carboxylate gels. J. Am. Ceram. Soc. 80, 915 (1997).CrossRefGoogle Scholar
49Wang, Y., Cheng, Y.L., Cheng, K.C., Chan, H.L.W., and Choy, C.L.: In-plane dielectric properties of epitaxial 0.65 Pb(Mg1/3 Nb2/3)O3-0.35PbTiO3 thin films in a very wide frequency range. Appl. Phys. Lett. 85, 1580 (2004).CrossRefGoogle Scholar
50Park, J.H., Xu, F., and Trolier-McKinstry, S.: Dielectric and piezoelectric properties of sol-gel derived lead magnesium niobium titanate films with different textures. J. Appl. Phys. 89, 568 (2001).CrossRefGoogle Scholar
51Tiwari, V.S., Singh, N., and Pandey, D.: Diffuse ferroelectric transition and relaxational dipolar freezing in (Ba,Sr)TiO3. J. Phys.: Condens. Matter 7, 1441 (1995).Google Scholar
52Wang, H., Pan, X., Lin, D., Luo, H., Yin, Z., and Elouadi, B.: Dielectric and thermal evidence of phase transitions in the system of (1-x) Pb (Mg1/3Nb2/3)O3-xPbTiO3. Appl. Phys. Lett. 90, 252902 (2007).CrossRefGoogle Scholar
53Emelyanov, A.S., Raevskaya, S.I., Savenkob, F.I., Topolov, V.Y., Raevski, I.P., Turik, A.V., and Kholkin, A.L.: Dielectric and piezoelectric properties of (001)-oriented (1-x) Pb(Mg1/3Nb2/3)O3-x PbTiO3 single crystals with 0.1 9 x 9 0.4. Solid State Commun. 143, 188 (2007).CrossRefGoogle Scholar
54Chattopadhyay, S., Ayyub, P., Palkar, V.R., and Multani, M.: Size-induced diffuse phase transition in the nano-crystalline ferroelectric PbTiO3. Phys. Rev. B: Condens. Matter 52, 13177 (1995).CrossRefGoogle Scholar
55Jo, W., Kim, T.H., Kim, D.Y., and Pabi, S.K.: Effects of grain size on the dielectric properties of Pb(Mg1/3Nb2/3)O3-30mol%PbTiO3ceramics. J. Appl. Phys. 102, 074116 (2007).CrossRefGoogle Scholar