Skip to main content
×
×
Home

Phase field theory of crystal nucleation and polycrystalline growth: A review

  • L. Gránásy (a1), T. Pusztai (a1), T. Börzsönyi (a1), G. Tóth (a1), G. Tegze (a1), J.A. Warren (a2) and J.F. Douglas (a2)...
Abstract

We briefly review our recent modeling of crystal nucleation and polycrystalline growth using a phase field theory. First, we consider the applicability of phase field theory for describing crystal nucleation in a model hard sphere fluid. It is shown that the phase field theory accurately predicts the nucleation barrier height for this liquid when the model parameters are fixed by independent molecular dynamics calculations. We then address various aspects of polycrystalline solidification and associated crystal pattern formation at relatively long timescales. This late stage growth regime, which is not accessible by molecular dynamics, involves nucleation at the growth front to create new crystal grains in addition to the effects of primary nucleation. Finally, we consider the limit of extreme polycrystalline growth, where the disordering effect due to prolific grain formation leads to isotropic growth patterns at long times, i.e., spherulite formation. Our model of spherulite growth exhibits branching at fixed grain misorientations, induced by the inclusion of a metastable minimum in the orientational free energy. It is demonstrated that a broad variety of spherulitic patterns can be recovered by changing only a few model parameters.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: grana@szfki.hu This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium JJ Proceedings, Vol. 859E.
References
Hide All
1.Jin, L-W., Claborn, K.A., Kurimoto, M., Geday, M.A., Maezawa, I., Sohraby, F., Estrada, M., Kaminsky, W. and Kahr, B.: Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proc. Natl. Acad. Sci. U S A 100, 15297 (2003).
2.Proc. Royal Soc. Discussion Meeting on Nucleation Control, edited by Greenwood, G.W., Greer, A.L., Herlach, D.M., and Kelton, K.F., Philos. Trans. 361 (2003).
3.Swope, W.C. and Andersen, H.C.: 106—particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042 (1990).
4.Wolde, P.R. ten and Frenkel, D.: Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191 (1999).
5.Wolde, P.R. ten, Ruiz-Montero, M.J. and Frenkel, D.: Numerical eviedence for bcc ordering at the surface of critical fcc nucleus. Phys. Rev. Lett. 75, 2714 (1995).
6.Auer, S. and Frenkel, D.: Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020 (2001).
7.Davidchack, R.L. and Laird, B.B.: Direct calculation of the hard-sphere crystal/melt interfacial free energy. J. Chem. Phys. 108, 9452 (1998).
8.Oxtoby, D.W.: Density-functional methods in the statistical mechanics of materials. Annu. Rev. Mater. Res. 32, 39 (2002).
9.Shen, Y.C. and Oxtoby, D.W.: Bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density-functional theory. Phys. Rev. Lett. 77, 3585 (1996).
10.Gránásy, L. and Oxtoby, D.W.: Cahn–Hilliard theory with triple parabolic free energy. II. Nucleation and growth in the presence of a metastable crystalline phase. J. Chem. Phys. 112, 2410 (2000).
11.Lee, K. and Losert, W.: Private communication (2004).
12.Nobel, B.D. and James, P.F.: Private communication (2003).
13.Ferreiro, V., Douglas, J.F., Warren, J.A. and Karim, A.: Growth pulsation in symmetric dendritic crystallization in thin polymer blend films. Phys. Rev. E 65, 051606 (2002).
14.Ryshchenkow, G. and Faivre, G.: Bulk crystallization of liquid selenium—Primary nucleation, growth-kinetics and modes of crystallization. J. Cryst. Growth 87, 221 (1988).
15.Ojeda, M. and Martin, D.C.: High-resolution microscopy of PMDA-ODA poly(imide) single crystals. Macromol. 26, 6557 (1993).
16.Padden, F.J. and Keith, H.D.: Crystalline morphology of synthetic polypeptides. J. Appl. Phys. 36, 2987 (1965).
17.Boettinger, W.J., Warren, J.A., Beckermann, C. and Karma, A.: Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32, 163 (2002).
18.Hoyt, J.J., Asta, M. and Karma, A.: Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng. Rep. R41, 121 (2003).
19.Keith, H.D., Padden, F.J. Jr.: A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 34, 2409 (1963).
20.Goldenfeld, N.: Theory of spherulitic solidification. J. Cryst. Growth 84, 601 (1987).
21.Nagarajan, K. and Myerson, A.S.: Molecular dynamics of nucleation and crystallization of polymers. Cryst. Growth Design 1, 131 (2005).
22.Yamamoto, T.: Molecular dynamics modeling of polymer crystallization from the melt. Polymer 45, 1357 (2004).
23.Gránásy, L., Börzsönyi, T. and Pusztai, T.: Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002).
24.Gránásy, L., Pusztai, T., Tóth, G., Jurek, Z., Conti, M. and Kvamme, B.: Phase field theory of crystal nucleation in hard-sphere liquid. J. Chem. Phys. 119, 10376 (2003).
25.Gránásy, L., Pusztai, T., Warren, J.A., Börzsönyi, T., Douglas, J.F. and Ferreiro, V.: Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nat. Mater. 2, 92 (2003).
26.Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J.A. and Douglas, J.F.: A general mechanism of polycrystalline growth. Nat. Mater. 3, 645 (2004).
27.Gránásy, L., Pusztai, T. and Warren, J.A.: Modelling polycrystalline solidification using phase field theory. J. Phys.: Condens. Matter 16, R1205 (2004).
28.Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A. and Douglas, J.F.: On the growth and form of spherulites. Phys. Rev. E 72, 011605 (2005).
29.Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A., and Douglas, J.F.: Polycrystalline patterns in far-from-equilibrium freezing: A phase field study. Philos. Mag. A (in press).
30.Kobayashi, R., Warren, J.A. and Carter, W.C.: Vector-valued phase field model for crystallization and grain boundary formation. Physica D 119, 415 (1998).
31.Pusztai, T., Bortel, G. and Gránásy, L.: Phase field theory of polycrystalline solidification in three dimensions. Europhys. Lett. 71, 131 (2005).
32.Kobayashi, R. and Warren, J.A.: Modeling the formation and dynamics of polycrystals in 3D. Physica A 356, 127 (2005).
33.Kobayashi, R. and Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187 (1999).
34.Warren, J.A., Kobayashi, R., Lobkovsky, A.E. and Carter, W.C.: Extending phase field models of solidification to polycrystalline materials. Acta Mater. 51, 6035 (2003).
35.Roy, A., Rickman, J.M., Gunton, J.D. and Elder, K.R.: Simulation study of nucleation in a phase-field model with nonlocal interactions. Phys. Rev. E 56, 2610 (1998).
36.Elder, K.R., Drolet, F., Kosterlitz, J.M. and Grant, M.: Stochastic eutectic growth. Phys. Rev. Lett. 72, 677 (1994).
37.Castro, M.: Phase-field approach to heterogeneous nucleation. Phys. Rev. B 67, 035412 (2003).
38.Cacciuto, A., Auer, S. and Frenkel, D.: Solid-liquid interfacial free energy of small colloidal hard-sphere crystals. J. Chem. Phys. 119, 7467 (2003).
39.Mu, Y., Houk, A. and Song, X.: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. J. Phys. Chem. B 109, 6500 (2005).
40.Tóth, G. Investigation of crystal nucleation in the hard sphere system. Diploma Thesis Technical University of Budapest, Hungary (2004).
41.Girshick, S.L. and Chiu, C.P.: Kinetic nucleation theory—A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93, 1273 (1990).
42.Gránásy, L.: Diffuse interface theory for homogeneous vapor condensation. J. Chem. Phys. 104, 5188 (1996).
43.Magill, J.H.: Review spherulites: A personal perspective. J. Mater. Sci. 36, 3143 (2001).
44.Khoury, F.: The spherulitic crystallization of isotatic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded precursors. J. Res. Natl. Bur. Stand. 70A, 29 (1966).
45.Keller, A. and Waring, J.R.: The spherulitic structure of crystalline polymers. Part III. Geometrical factors in spherulitic growth and the fine-structure. J. Polymer Sci. 17, 447 (1955).
46.Magill, J.H.: Crystallization of poly-(tetramethyl-p-silphenylene)-solixane polymers. J. Appl. Phys. 35, 3249 (1964).
47.Pusztai, T., Bortel, G. and Gránásy, L.: Phase field theory modeling of polycrystalline freezing. Mater. Sci. Eng. A 413–414, 412 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed