Skip to main content

Phase transformations in nanocomposite ZrAlN thin films during annealing

  • Lina Rogström (a1), Mats Ahlgren (a2), Jonathan Almer (a3), Lars Hultman (a4) and Magnus Odén (a5)...

Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050–1400 °C, nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum, while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1300 °C.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Veprek S. and Reiprich S.: A concept for the design of novel superhard coatings. Thin Solid Films 268(1–2), 64 (1995).
2.Veprek S., Niederhofer A., Moto K., Bolom T., Männling H.D., Nesladek P., Dollinger G., and Bergmaier A.: Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol. 133134, 152 (2000).
3.Ma D., Ma S., and Xu K.: Superhard nanocomposite Ti-Si-C-N coatings prepared by pulsed-d.c. plasma enhanced CVD. Surf. Coat. Technol. 200, 382 (2005).
4.Guo Y., Ma S., and Xu K.: Effects on carbon content and annealing temperature on the microstructure and hardness of super hard Ti-Si-C-N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240 (2007).
5.Winkelmann A., Cairney J.M., Hoffman M.J., Martin P.J., and Bendavid A.: Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surf. Coat. Technol. 200(14–15), 4213 (2006).
6.Mitterer C., Losbichler P., Hofer F., Warbichler P., Gibson P.N., and Gissler W.: Nanocrystalline hard coatings within the quasi-binary system TiN-TiB2. Vacuum 50(3–4), 313 (1998).
7.Karvankova P., Veprek-Heijman M.G.J., Zindulka O., Bergmaier A., and Veprek S.: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163164(0), 149 (2003).
8.Männling H.-D., Patil D.S., Moto K., Jilek M., and Veprek S.: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146147, 263 (2001).
9.Koehler J.S.: Attempt to design a strong solid. Phys. Rev. B 2(2), 547 (1970).
10.Helmersson U., Todorova S., Barnett S.A., Sundgren J.E., Markert L.C., and Greene J.E.: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62(2), 481 (1987).
11.Söderberg H., Odén M., Molina-Aldareguia J.M., and Hultman L.: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97(11), 114327 (2005).
12.Mayrhofer P.H., Hörling A., Karlsson L., Mitterer C., and Hultman L.: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83(10), 2049 (2003).
13.Hörling A., Hultman L., Odén M., Sjölén J., and Karlsson L.: Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surf. Coat. Technol. 191(2–3), 384 (2005).
14.Knutsson A., Johansson M.P., Persson P.O.Å., Hultman L., and Odén M.: Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 93, 143110 (2008).
15.Tasnádi F., Abrikosov I.A., Rogström L., Almer J., Johansson M.P., and Odén M.: Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 97, 231902 (2010).
16.Flink A., Andersson J.M., Alling B., Daniel R., Sjölén J., Karlsson L., and Hultman L.: Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films. Thin Solid Films 517(2), 714 (2008).
17.Johnson L.J.S., Rogström L., Johansson M.P., Odén M., and Hultman L.: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397 (2010).
18.Mayrhofer P.H., Stoiber M., and Mitterer C.: Age hardening of PACVD TiBN thin films. Scr. Mater. 53(2), 241 (2005).
19.Lind H., Forsén R., Alling B., Ghafoor N., Tasnádi F., Johansson M.P., Abrikosov I.A., and Odén M.: Improving thermal stability of hard coating films via a concept of multicomponent alloying. Appl. Phys. Lett. 99, 091903 (2011).
20.Hasegawa H., Kawate M., and Suzuki T.: Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 200, 2409 (2005).
21.Lamni R., Sanjinés R., Parlinska-Wojtan M., Karimi A., and Lévy F.: Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films. J. Vac. Sci. Technol., A 23(4), 593 (2005).
22.Rogström L., Johnson L.J.S., Johansson M.P., Ahlgren M., Hultman L., and Odén M.: Age hardening in arc-evaporated ZrAlN thin films. Scr. Mater. 62, 739 (2010).
23.Rogström L., Johnson L.J.S., Johansson M.P., Ahlgren M., Hultman L., and Odén M.: Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers. Thin Solid Films 519, 694 (2010).
24.Oliver W.C. and Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
25.Almer J., Lienert U., Peng R.L., Schlauer C., and Odén M.: Strain and texture analysis of coatings using high-energy x-rays. J. Appl. Phys. 94(1), 697 (2003).
26.Brik M.G. and Ma C.G.: First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Cs, Ti, V, Cr, Zr, Nb). Comp. Mat. Sci. 51, 380 (2012).
27.Jemian P.R., Weertman J.R., Long G.G., and Spal R.D.: Characterization of 9Cr-1MoVNb steel by anomalous small-angle x-ray scattering. Acta Metall. Mater. 39(11), 2477 (1991).
28.Ilavsky J. and Jemian P.R.: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42(2), 347 (2009).
29.Al3Zr, PDF No. 48-1385, JCPDS - International Centre for Diffraction Data. (1998).
30.Al3Zr4, PDF No. 48-1381, JCPDS - International Centre for Diffraction Data. (1998).
31.Petrov I., Barna P.B., Hultman L., and Greene J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), S117 (2003).
32.Diserens M., Patscheider J., and Lévy F.: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108109(1–3), 241 (1998).
33.Patscheider J., Zehnder T., and Diserens M.: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146147, 201 (2001).
34.Sandu C.S., Medjani F., Sanjinés R., Karimi A., and Lévy F.: Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite. Surf. Coat. Technol. 201(7), 4219 (2006).
35.Anders A.: Cathodic Arcs, From Fractal Spots to Energetic Condensation (Springer Series, New York, NY, 2008).
36.Yee D.S., Cuomo J.J., Frisch M.A., and Smith D.P.E.: Reactive radio frequency sputter deposition of higher nitrides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4(3), 381 (1986).
37.Perry A.J.: On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol., A 6(3), 2140 (1988).
38.Dauchot J.P., Edart S., Wautelet M., and Hecq M.: Synthesis of zirconium nitride films monitored by in situ soft x-ray spectrometry. Vacuum 46(8–10), 927 (1995).
39.Pichon L., Girardeau T., Straboni A., Lignou F., Guérin P., and Perrière J.: Zirconium nitrides deposited by dual ion beam sputtering: Physical properties and growth modelling. Appl. Surf. Sci. 150(1–4), 115 (1999).
40.Benia H.M., Guemmaz M., Schmerber G., Mosser A., and Parlebas J.-C.: Investigations on non-stoichiometric zirconium nitrides. Appl. Surf. Sci. 200, 231 (2002).
41.Spillmann H., Willmott P.R., Morstein M., and Uggowitzer P.J.: ZrN, ZrxAlyN and ZrxGayN thin films - novel materials for hard coatings grown using pulsed laser deposition. Appl. Phys. A 73, 441 (2001).
42.Ruan J.-L., Huang J.-L., Chen J.S., and Lii D.-F.: Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol. 200, 1652 (2005).
43.Toth L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).
44.Uhrenius B.: Evaluation of molar volumes in the Co-W-C system and calculation of volume fractions of phases in cemented carbides. Int. J. Refract. Met. Hard Mater. 12, 121 (1994).
45.Gruss K.A., Zheleva T., Davis R.F., and Watkins T.R.: Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol. 107, 115 (1998).
46.Niu E.W., Li L., Lv G.H., Chen H., Feng W.R., Fan S.H., Yang S.Z., and Yang X.Z.: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Mater. Sci. Eng., A 460461, 135 (2007).
47.Mayrhofer P.H., Tischler G., and Mitterer C.: Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 142144, 78 (2001).
48.Tung H.-M., Huang J.-H., Tsai D.-G., Ai C.-F., and Yu G.-P.: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng., A 500(1–2), 104 (2009).
49.Siegel R.W. and Fougere G.E.: Mechanical properties of nanophase metals. Nanostruct. Mater. 6(1–4), 205 (1995).
50.Schiotz J., Di Tolla F.D., and Jacobsen K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).
51.Rester M., Neidhardt J., Eklund P., Emmerlich J., Ljungcrantz H., Hultman L., and Mitterer C.: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429(1–2), 90 (2006).
52.Kim H.S. and Bush M.B.: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11(3), 361 (1999).
53.Török E., Perry A.J., Chollet L., and Sproul W.D.: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153(1–3), 37 (1987).
54.Perry A.J.: A contribution to the study of Poisson’s ratios and elastic constants of TiN, ZrN and HfN. Thin Solid Films 193/194, 463 (1990).
55.Gerlich D., Dole S.L., and Slack G.A.: Elastic properties of aluminium nitride. J. Phys. Chem. Solids 47(5), 437 (1986).
56.Mortet V., Nesladek M., Haenen K., Morel A., D’Olieslaeger M., and Vanecek M.: Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diamond Relat. Mater. 13 (4–8), 1120 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.