Skip to main content
    • Aa
    • Aa

Phase transitions in stable nanocrystalline alloys

  • Arvind R. Kalidindi (a1) and Christopher A. Schuh (a1)

Grain boundary segregation can reduce the driving force for grain growth in nanocrystalline materials and help retain fine grain sizes. However, grain boundary segregation is enthalpically driven, and so a stabilized nanocrystalline state should undergo a disordering process as temperature is increased. Here we develop a Monte Carlo-based simulation that determines the minimum free energy state of an alloy with a strong tendency for grain boundary segregation that considers both different grain sizes and a large solute configuration space. We find that a stable nanocrystalline alloy undergoes a disordering process where grain boundary segregated atoms dissolve into the adjacent grains and increase the grain size as a function of temperature. At a critical temperature, the single crystal state becomes the most preferred. Using this method, we are able to determine how the grain size changes as a function of temperature and produce equilibrium phase diagrams for nanocrystalline alloys.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Jürgen Eckert

This paper has been selected as an Invited Feature Paper.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V.Y. Gertsman and R. Birringer : On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30, 577581 (1994).

U. Klement , U. Erb , A.M. El-Sherik , and K.T. Aust : Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177186 (1995).

J.M. Dake and C.E. Krill : Sudden loss of thermal stability in Fe-based nanocrystalline alloys. Scr. Mater. 66, 390393 (2012).

M. Ames , J. Markmann , R. Karos , A. Michels , A. Tschope , and R. Birringer : Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 42554266 (2008).

K. Lücke and K. Detert : A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities. Acta Metall. 5, 628637 (1957).

A. Michels , C.E. Krill , H. Ehrhardt , R. Birringer , and D.T. Wu : Modeling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 21432152 (1999).

M. Hillert : Inhibition of grain growth by second-phase particles. Acta Metall. 36, 31773181 (1988).

K. Boylan , D. Ostrander , U. Erb , G. Palumbo , and K.T. Aust : An in situ TEM study of the thermal stability of nanocrystalline NiP. Scr. Metall. Mater. 25, 27112716 (1991).

T. Chookajorn , H.A. Murdoch , and C.A. Schuh : Design of stable nanocrystalline alloys. Science 337, 951954 (2012).

K.A. Darling , B.K. VanLeeuwen , J.E. Semones , C.C. Koch , R.O. Scattergood , L.J. Kecskes , and S.N. Mathaudhu : Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528, 43654371 (2011).

P. Choi , M. da Silva , U. Klement , T. Al-Kassab , and R. Kirchheim : Thermal stability of electrodeposited nanocrystalline Co–1.1 at.% P. Acta Mater. 53, 44734481 (2005).

T. Chookajorn and C.A. Schuh : Nanoscale segregation behavior and high-temperature stability for nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128138 (2014).

K.A. Darling , B.K. VanLeeuween , C.C. Koch , and R.O. Scattergood : Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527, 35723580 (2010).

J. Weissmüller : Alloy effects in nanostructures. Nanostruct. Mater. 3, 16 (1993).

J.R. Trelewicz and C.A. Schuh : Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 094112 (2009).

H.A. Murdoch and C.A. Schuh : Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61, 21212132 (2013).

N. Zhou and J. Luo : Developing thermodynamic stability diagrams for equilibrium-grain-size binary alloys. Mater. Lett. 115, 268271 (2014).

F. Abdeljawad , P. Lu , N. Argibay , B.G. Clark , B.L. Boyce , and S.M. Foiles : Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater. 126, 528539 (2017).

J.W. Cahn : Transitions and phase equilibria among grain boundary structures. J. Phys., Colloq. 43, C6-199 (1982).

K.E. Sickafus and S.L. Sass : Grain boundary structural transformations induced by solute segregation. Acta Metall. 35, 6979 (1987).

P. Wynblatt and D. Chatain : Solid-state wetting transitions at grain boundaries. Mater. Sci. Eng., A 495, 119125 (2008).

J.D. Rittner and D.N. Seidman : Solute-atom segregation to 〈100〉 symmetric tilt grain boundaries. Acta Mater. 45, 31913202 (1997).

D.N. Seidman : Subnanoscale studies of segregation at grain boundaries: Simulations and experiments. Annu. Rev. Mater. Res. 32, 235269 (2002).

T. Chookajorn and C.A. Schuh : Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 064102 (2014).

A.R. Kalidindi , T. Chookajorn , and C.A. Schuh : Nanocrystalline materials at equilibrium: A thermodynamic review. JOM 67, 28342843 (2015).

M.N. Polyakov , T. Chookajorn , M. Mecklenburg , C.A. Schuh , and A.M. Hodge : Sputtered Hf–Ti nanostructures; A segregation and high-temperature stability study. Acta Mater. 108, 816 (2016).

B.G. Clark , K. Hatter , M.T. Marshall , T. Chookajorn , B.L. Boyce , and C.A. Schuh : Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68, 16251633 (2016).

T. Chookajorn , M. Park , and C.A. Schuh : Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr. J. Mater. Res. 30, 151163 (2015).

W. Xing , A.R. Kalidindi , and C.A. Schuh : Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr. Mater. 127, 136140 (2017).

A.J. Detor and C.A. Schuh : Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55, 42214232 (2007).

F. Liu and R. Kircheim : Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385391 (2004).

A.R. Kalidindi and C.A. Schuh : A compound unit method for incorporating ordered compounds into lattice models of alloys. Comput. Mater. Sci. 118, 172179 (2016).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 87 *
Loading metrics...

Abstract views

Total abstract views: 317 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 19th August 2017. This data will be updated every 24 hours.