Skip to main content
×
Home
    • Aa
    • Aa

Phase transitions in stable nanocrystalline alloys

  • Arvind R. Kalidindi (a1) and Christopher A. Schuh (a1)
Abstract
Abstract

Grain boundary segregation can reduce the driving force for grain growth in nanocrystalline materials and help retain fine grain sizes. However, grain boundary segregation is enthalpically driven, and so a stabilized nanocrystalline state should undergo a disordering process as temperature is increased. Here we develop a Monte Carlo-based simulation that determines the minimum free energy state of an alloy with a strong tendency for grain boundary segregation that considers both different grain sizes and a large solute configuration space. We find that a stable nanocrystalline alloy undergoes a disordering process where grain boundary segregated atoms dissolve into the adjacent grains and increase the grain size as a function of temperature. At a critical temperature, the single crystal state becomes the most preferred. Using this method, we are able to determine how the grain size changes as a function of temperature and produce equilibrium phase diagrams for nanocrystalline alloys.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: schuh@mit.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

This paper has been selected as an Invited Feature Paper.

Footnotes
References
Hide All
1. GertsmanV.Y. and BirringerR.: On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30, 577581 (1994).
2. KlementU., ErbU., El-SherikA.M., and AustK.T.: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177186 (1995).
3. DakeJ.M. and KrillC.E.: Sudden loss of thermal stability in Fe-based nanocrystalline alloys. Scr. Mater. 66, 390393 (2012).
4. AmesM., MarkmannJ., KarosR., MichelsA., TschopeA., and BirringerR.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 42554266 (2008).
5. LückeK. and DetertK.: A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities. Acta Metall. 5, 628637 (1957).
6. MichelsA., KrillC.E., EhrhardtH., BirringerR., and WuD.T.: Modeling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 21432152 (1999).
7. HillertM.: Inhibition of grain growth by second-phase particles. Acta Metall. 36, 31773181 (1988).
8. BoylanK., OstranderD., ErbU., PalumboG., and AustK.T.: An in situ TEM study of the thermal stability of nanocrystalline NiP. Scr. Metall. Mater. 25, 27112716 (1991).
9. ChookajornT., MurdochH.A., and SchuhC.A.: Design of stable nanocrystalline alloys. Science 337, 951954 (2012).
10. DarlingK.A., VanLeeuwenB.K., SemonesJ.E., KochC.C., ScattergoodR.O., KecskesL.J., and MathaudhuS.N.: Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528, 43654371 (2011).
11. ChoiP., da SilvaM., KlementU., Al-KassabT., and KirchheimR.: Thermal stability of electrodeposited nanocrystalline Co–1.1 at.% P. Acta Mater. 53, 44734481 (2005).
12. ChookajornT. and SchuhC.A.: Nanoscale segregation behavior and high-temperature stability for nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128138 (2014).
13. DarlingK.A., VanLeeuweenB.K., KochC.C., and ScattergoodR.O.: Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527, 35723580 (2010).
14. WeissmüllerJ.: Alloy thermodynamics in nanostructures. J. Mater. Res. 9, 47 (1994).
15. WeissmüllerJ.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 16 (1993).
16. TrelewiczJ.R. and SchuhC.A.: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 094112 (2009).
17. MurdochH.A. and SchuhC.A.: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61, 21212132 (2013).
18. ZhouN. and LuoJ.: Developing thermodynamic stability diagrams for equilibrium-grain-size binary alloys. Mater. Lett. 115, 268271 (2014).
19. AbdeljawadF., LuP., ArgibayN., ClarkB.G., BoyceB.L., and FoilesS.M.: Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater. 126, 528539 (2017).
20. CahnJ.W.: Transitions and phase equilibria among grain boundary structures. J. Phys., Colloq. 43, C6-199 (1982).
21. SickafusK.E. and SassS.L.: Grain boundary structural transformations induced by solute segregation. Acta Metall. 35, 6979 (1987).
22. WynblattP. and ChatainD.: Solid-state wetting transitions at grain boundaries. Mater. Sci. Eng., A 495, 119125 (2008).
23. TangM., CarterW.C., and CannonR.M.: Grain boundary transitions in binary alloys. Phys. Rev. Lett. 92, 075502 (2006).
24. RittnerJ.D. and SeidmanD.N.: Solute-atom segregation to 〈100〉 symmetric tilt grain boundaries. Acta Mater. 45, 31913202 (1997).
25. SeidmanD.N.: Subnanoscale studies of segregation at grain boundaries: Simulations and experiments. Annu. Rev. Mater. Res. 32, 235269 (2002).
26. ChookajornT. and SchuhC.A.: Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 064102 (2014).
27. KalidindiA.R., ChookajornT., and SchuhC.A.: Nanocrystalline materials at equilibrium: A thermodynamic review. JOM 67, 28342843 (2015).
28. PolyakovM.N., ChookajornT., MecklenburgM., SchuhC.A., and HodgeA.M.: Sputtered Hf–Ti nanostructures; A segregation and high-temperature stability study. Acta Mater. 108, 816 (2016).
29. ClarkB.G., HatterK., MarshallM.T., ChookajornT., BoyceB.L., and SchuhC.A.: Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68, 16251633 (2016).
30. ChookajornT., ParkM., and SchuhC.A.: Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr. J. Mater. Res. 30, 151163 (2015).
31. XingW., KalidindiA.R., and SchuhC.A.: Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr. Mater. 127, 136140 (2017).
32. LandauD.P. and BinderK.: A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, England, 2000).
33. DetorA.J. and SchuhC.A.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55, 42214232 (2007).
34. LiuF. and KircheimR.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385391 (2004).
35. KalidindiA.R. and SchuhC.A.: A compound unit method for incorporating ordered compounds into lattice models of alloys. Comput. Mater. Sci. 118, 172179 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 131 *
Loading metrics...

Abstract views

Total abstract views: 422 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 19th October 2017. This data will be updated every 24 hours.