Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T04:10:07.066Z Has data issue: false hasContentIssue false

Phenol red dyed bis thiourea cadmium acetate monocrystal growth and characterization for optoelectronic applications

Published online by Cambridge University Press:  20 July 2018

Vanga Ganesh
Affiliation:
Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia; and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
Mohd. Shkir*
Affiliation:
Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia; and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
Kamlesh Kumar Maurya
Affiliation:
National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi 110012, India
I.S. Yahia
Affiliation:
Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Salem AlFaify*
Affiliation:
Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
*
a)Address all correspondence to these authors. e-mail: shkirphysics@gmail.com
Get access

Abstract

Phenol red dyed bis thiourea cadmium acetate (BTCA) crystals of ∼30 × 10 × 6 mm dimension have been grown for the first time using the slow evaporation solution technique. Diffuse reflectance measurements show absorption bands at 363 and 563 nm in the doped crystal. Optical energy gap was calculated to be 4–5 eV. Photoluminescence spectra were recorded using 320 nm excitation source. The chemical etching study was done and etch pit density was found to be reduced from 4.5 × 103/cm2 (pure) to 3.0 × 102/cm2 (dyed). Mechanical strength is increased from 74.1 kg/mm2 for pure to 94.7 kg/mm2 for dyed crystals. The enriched properties of BTCA in the presence of dye suggest that the dyed crystals will be more applicable compared to pure crystals.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dudley, J.M. and Taylor, J.R.: Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85 (2009).CrossRefGoogle Scholar
Fejer, M.M.: Nonlinear optical frequency conversion. Phys. Today 47, 25 (1994).CrossRefGoogle Scholar
Shang, J., Sun, J., Li, Q., Yang, J., Zhang, L., and Xu, J.: Single-block pulse-on electro-optic Q-switch made of LiNbO3. Sci. Rep. 7, 4651 (2017).CrossRefGoogle Scholar
Bhagavannarayana, G., Parthiban, S., and Meenakshisundaram, S.: An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl-and oxalic acid-doped ADP crystals. Cryst. Growth Des. 8, 446 (2007).CrossRefGoogle Scholar
Wang, C., Zhang, T., and Lin, W.: Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem. Rev. 112, 1084 (2011).CrossRefGoogle ScholarPubMed
Murugesan, S., Kearns, P., and Stevenson, K.J.: Electrochemical deposition of germanium sulfide from room-temperature ionic liquids and subsequent Ag doping in an aqueous solution. Langmuir 28, 5513 (2012).CrossRefGoogle Scholar
Pritula, I., Gayvoronsky, V., Gromov, Y., Kopylovsky, M., Kolybaeva, M., Puzikov, V., Kosinova, A., Savvin, Y., Velikhov, Y., and Levchenko, A.: Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment. Opt. Commun. 282, 1141 (2009).CrossRefGoogle Scholar
Ganesh, V., Shkir, M., AlFaify, S., and Yahia, I.S.: Enhanced optoelectronic, thermal, mechanical and third order nonlinear optical properties of dichlorobis(thiourea)zinc(II) crystal: An effect of phenol red dye. J. Mater. Sci.: Mater. Electron. 28, 5733 (2017).Google Scholar
Kahr, B. and Gurney, R.W.: Dyeing crystals. Chem. Rev. 101, 893 (2001).CrossRefGoogle ScholarPubMed
Kahr, B. and Shtukenberg, A.: Dyeing crystals since 2000. CrystEngComm 18, 8988 (2016).CrossRefGoogle Scholar
Wustholz, K.L., Bott, E.D., Isborn, C.M., Li, X., Kahr, B., and Reid, P.J.: Dispersive kinetics from single molecules oriented in single crystals of potassium acid phthalate. J. Phys. Chem. C 111, 9146 (2007).CrossRefGoogle Scholar
Shkir, M.: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).CrossRefGoogle Scholar
Shkir, M., Ganesh, V., AlFaify, S., Maurya, K.K., and Vijayan, N.: Effect of phenol red dye on monocrystal growth, crystalline perfection, and optical and dielectric properties of zinc(tris) thiourea sulfate. J. Appl. Crystallogr. 50, 1716 (2017).CrossRefGoogle Scholar
Ganesh, V., Bhaskar Rao, T., Kishan Rao, K., Bhagavannarayana, G., and Shkir, M.: Effect of L-alanine, Mn(II) and glycine dopants on the structural, crystalline perfection, second harmonic generation (SHG), dielectric and mechanical properties of BTCA single crystals. Mater. Chem. Phys. 137, 276 (2012).CrossRefGoogle Scholar
Ganesh, V., Snehalatha Reddy, C., Shakir, M., Wahab, M., Bhagavannarayana, G., and Kishan Rao, K.: Comparative study on BIS thiourea cadmium acetate crystals using HRXRD, etching, microhardness, UV–visible and dielectric characterizations. Phys. B 406, 259 (2011).CrossRefGoogle Scholar
Khan, I., Anis, M., and Bhati, U.: Influence of L-lysine on optical and dielectric traits of cadmium thiourea acetate complex crystal. Optik 170, 43 (2018).CrossRefGoogle Scholar
Anis, M., Hussaini, S., Shirsat, M., and Muley, G.: Evaluate the effect of L-valine on linear–nonlinear optical and electrical properties of BTCA crystal to identify photonic device applications. Mater. Res. Innovations 20, 312 (2016).CrossRefGoogle Scholar
Anis, M., Shkir, M., Baig, M.I., Ramteke, S.P., Muley, G.G., AlFaify, S., and Ghramh, H.A.: Experimental and computational studies of L-tartaric acid single crystal grown at optimized pH. J. Mol. Struct. 1170, 151 (2018).CrossRefGoogle Scholar
Ramteke, S., Anis, M., Baig, M., and Muley, G.: Influence of Cu2+ ion on structural, luminescence and dielectric properties of zinc thiourea chloride metal–organic complex crystal. Optik 154, 275 (2018).CrossRefGoogle Scholar
Shkir, M., Ganesh, V., AlFaify, S., Yahia, I., and Maurya, K.: Remarkable effect of L-Ascorbic acid on crystal morphology, structural, crystalline perfection, optical, photoluminescence and dielectric properties of zinc(tris) thiourea sulphate (ZTS) single crystals. Arabian J. Chem. (2017). Available at: https://www.sciencedirect.com/science/article/pii/S1878535217302368.CrossRefGoogle Scholar
Battermann, B. and Cole, H.: See for instance. Rev. Mod. Phys. 36, 681 (1964).Google Scholar
Shakir, M., Kushawaha, S., Maurya, K., Kumar, S., Wahab, M., and Bhagavannarayana, G.: Enhancement of second harmonic generation, optical and dielectric properties in L-asparagine monohydrate single crystals due to an improvement in crystalline perfection by annealing. J. Appl. Crystallogr. 43, 491 (2010).CrossRefGoogle Scholar
Kushwaha, S., Maurya, K., Haranath, D., and Bhagavannarayana, G.: The effect of Cr3+ doping on the crystalline perfection and optical properties of zinc tris(thiourea) sulfate, a nonlinear optical material. J. Appl. Crystallogr. 44, 1054 (2011).CrossRefGoogle Scholar
Shkir, M., Ganesh, V., AlFaify, S., Black, A., Dieguez, E., and Bhagavannarayana, G.: VGF bulk growth, crystalline perfection and mechanical studies of CdZnTe single crystal: A detector grade materials. J. Alloys Compd. 686, 438 (2016).CrossRefGoogle Scholar
Mohd, S., Ganesh, V., AlFaify, S., Yahia, I.S., and Mohd, A.: Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc(tris) thiourea sulfate single crystal: A noticeable effect of organic dye. Chin. Phys. B 27, 054216 (2018).Google Scholar
Shaikh, R., Anis, M., Shirsat, M., and Hussaini, S.: Systematic analysis on linear and nonlinear optical traits of citrulline doped NH4H2PO4 (ADP) crystal. Optik 154, 435 (2018).CrossRefGoogle Scholar
Ramteke, S., Baig, M., Shkir, M., Kalainathan, S., Shirsat, M., Muley, G., and Anis, M.: Novel report on SHG efficiency, Z-scan, laser damage threshold, photoluminescence, dielectric and surface microscopic studies of hybrid inorganic ammonium zinc sulphate hydrate single crystal. Opt. Laser Technol. 104, 83 (2018).CrossRefGoogle Scholar
Shkir, M., AlFaify, S., Ganesh, V., Yahia, I., Algarni, H., and Shoukry, H.: Brilliant green dye added zinc(tris) thiourea sulphate monocrystal growth with enhanced crystalline perfection, optical, photoluminescence and mechanical properties. J. Mater. Sci.: Mater. Electron. 27, 10673 (2016).Google Scholar
Bhandari, S., Sinha, N., Ray, G., and Kumar, B.: Enhanced optical, dielectric and piezoelectric behavior in dye doped zinc tris-thiourea sulphate (ZTS) single crystals. Chem. Phys. Lett. 591, 10 (2014).CrossRefGoogle Scholar
Rajesh, P., Silambarasan, A., and Ramasamy, P.: Effect of crystal violet dye on the optical, dielectric, thermal and mechanical properties of 〈001〉 directed KDP single crystal. Mater. Res. Bull. 49, 640 (2014).CrossRefGoogle Scholar
Kubelka, P. and Munk, F.: A contribution to the optics of pigments. Z. Tech. Phys. 12, 593 (1931).Google Scholar
Shakir, M., Kushwaha, S., Maurya, K., Bhagavannarayana, G., and Wahab, M.: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).CrossRefGoogle Scholar
Shkir, M., Abbas, H., and Khan, Z.R.: Effect of thickness on the structural, optical and electrical properties of thermally evaporated PbI2 thin films. J. Phys. Chem. Solids 73, 1309 (2012).CrossRefGoogle Scholar
Shkir, M., Riscob, B., Hasmuddin, M., Singh, P., Ganesh, V., Wahab, M., Dieguez, E., and Bhagavannarayana, G.: Optical spectroscopy, crystalline perfection, etching and mechanical studies on P-nitroaniline (PNA) single crystals. Opt. Mater. 36, 675 (2014).CrossRefGoogle Scholar
Ramteke, S., Anis, M., Baig, M., Shkir, M., Ganesh, V., and Muley, G.: Eye-catching modification in external morphology, photoluminescence and SHG efficiency of NH4H2PO4 crystal: A consequence of influential presence of tartaric acid. Optik 158, 634 (2018).CrossRefGoogle Scholar
Anis, M., Hussaini, S.S., Shkir, M., AlFaify, S., Baig, M.I., and Muley, G.G.: Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal. Optik 157, 592 (2018).CrossRefGoogle Scholar
Anis, M., Ramteke, S., Shirsat, M., Muley, G., and Baig, M.: Novel report on γ-glycine crystal yielding high second harmonic generation efficiency. Opt. Mater. 72, 590 (2017).CrossRefGoogle Scholar
Anis, M., Baig, M.I., Pandian, M.S., Ramasamy, P., AlFaify, S., Ganesh, V., Muley, G.G., and Ghramh, H.A.: Optimizing structural, microhardness, surface growth mechanism, luminescence and thermal traits of KH2PO4 crystal exploiting multidirectional H-bonding quality of dopant tartaric acid. Cryst. Res. Technol. 53, 1700165 (2018).CrossRefGoogle Scholar
Azhar, S., Rabbani, G., Shirsat, M., Hussaini, S., Baig, M., Ghramh, H., and Anis, M.: Luminescence, laser induced nonlinear optical and surface microscopic studies of potassium thiourea chloride crystal. Optik 165, 259 (2018).CrossRefGoogle Scholar
Sangwal, K.: Etching of Crystals: Theory, Experiment and Application (Elsevier, New York City, New York, 2012).Google Scholar
Shekar, P., Nagaraju, D., Ganesh, V., and Rao, K.K.: Microhardness studies on as-grown (111) faces of some alkaline earth nitrates. Cryst. Res. Technol. 44, 652 (2009).CrossRefGoogle Scholar
Karan, S. and Gupta, S.S.: Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate. Mater. Sci. Eng., A 398, 198 (2005).CrossRefGoogle Scholar
Sangwal, K.: On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145 (2000).CrossRefGoogle Scholar
Ganesh, V., Shkir, M., Husain, R., Singh, R., Rao, T.B., and Rao, K.K.: Investigation on mechanical properties of some thiourea complex crystals: Important nonlinear optical materials. Optik 124, 6690 (2013).CrossRefGoogle Scholar
Sangwal, K., Kothari, A., and Arora, S.: Formation of indentation cracks and origin of indentation size effect in cadmium tartrate pentahydrate single crystals. Surf. Sci. 600, 1475 (2006).CrossRefGoogle Scholar
Shkir, M., Ganesh, V., AlFaify, S., Black, A., Dieguez, E., and Maurya, K.K.: Large size crystal growth, photoluminescence, crystal excellence, and hardness properties of in-doped cadmium zinc telluride. Cryst. Growth Des. 18, 2046 (2018).CrossRefGoogle Scholar
Sangwal, K., Surowska, B., and Błaziak, P.: Analysis of the indentation size effect in the microhardness measurement of some cobalt-based alloys. Mater. Chem. Phys. 77, 511 (2003).CrossRefGoogle Scholar
Sangwal, K. and Surowska, B.: Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Mater. Res. Innovations 7, 91 (2003).CrossRefGoogle Scholar
Li, H. and Bradt, R.: The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci. 31, 1065 (1996).CrossRefGoogle Scholar
Riscob, B., Shkir, M., Ganesh, V., Vijayan, N., Maurya, K., Kishan Rao, K., and Bhagavannarayana, G.: Synthesis, crystal growth and mechanical properties of bismuth silicon oxide (BSO) single crystal. J. Alloys Compd. 588, 242 (2014).CrossRefGoogle Scholar
Meyer, E. and Ver, Z.: Contribution to the knowledge of hardness and hardness testing. Z. Ver. Dtsch. Ing. 52, 645 (1908).Google Scholar
Hays, C. and Kendall, E.: An analysis of knoop microhardness. Metallography 6, 275 (1973).CrossRefGoogle Scholar
Li, H. and Bradt, R.: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).CrossRefGoogle Scholar
Sangwal, K., Hordyjewicz, M., and Surowska, B.: Microindentation hardness of SrLaAlO4 and SrLaGaO4 single crystals. J. Optoelectron. Adv. Mater. 4, 875 (2002).Google Scholar
Sangwal, K. and Kłos, A.: Study of microindentation hardness of different planes of gadolinium calcium oxyborate single crystals. Cryst. Res. Technol. 40, 429 (2005).CrossRefGoogle Scholar
Shakir, M., Riscob, B., Maurya, K., Ganesh, V., Wahab, M., and Bhagavannarayana, G.: Unidirectional growth of L-asparagine monohydrate single crystal: First time observation of NLO nature and other studies of crystalline perfection, optical, mechanical and dielectric properties. J. Cryst. Growth 312, 3171 (2010).CrossRefGoogle Scholar
Shakir, M., Ganesh, V., Wahab, M., Bhagavannarayana, G., and Rao, K.K.: Structural, optical and mechanical studies on pure and Mn2+ doped L-asparagine monohydrate single crystals. Mater. Sci. Eng., B 172, 9 (2010).CrossRefGoogle Scholar
Pollock, H., Maugis, D., and Pethica, J.B.: Measurement of hardness at indentation depths as low as 20 nanometres. In Microindentation Techniques in Materials Science and Engineering. ASTM STP 889, Blau, P.J. and Lawn, B.R., eds. (American Society for Testing and Materials, Philadelphia, 1986), doi: 10.1520/STP889-EB, ISBN-EB: 978-0-8031-4951-9, ISBN-13: 978-0-8031-0441-9.Google Scholar
Oliver, W.C., Hutchings, R., and Pethica, J.B.: Measurement of hardness at indentation depths as low as 20 nanometres. In Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, Blau, P.J. and Lawn, B.R., eds. (American Society for Testing and Materials, Philadelphia, 1986); pp. 90108.Google Scholar
Michels, B. and Frischat, G.: Microhardness of chalcogenide glasses of the system Se–Ge–As. J. Mater. Sci. 17, 329 (1982).CrossRefGoogle Scholar
Shakir, M., Ganesh, V., Riscob, B., Maurya, K., Wahab, M., Bhagavannarayana, G., and Kishan Rao, K.: Influence of L-alanine doping on crystalline perfection, SHG efficiency, optical and mechanical properties of KDP single crystals. Phys. B 406, 3392 (2011).CrossRefGoogle Scholar
Lawn, B.R. and Fuller, E.: Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016 (1975).CrossRefGoogle Scholar
Townsend, D. and Field, J.: Fracture toughness and hardness of zinc sulphide as a function of grain size. J. Mater. Sci. 25, 1347 (1990).CrossRefGoogle Scholar
Cahoon, J., Broughton, W., and Kutzak, A.: The determination of yield strength from hardness measurements. Metall. Trans. 2, 1979 (1971).Google Scholar
Wooster, W.: Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62 (1953).CrossRefGoogle Scholar
Baig, M.I., Anis, M., Kalainathan, S., Babu, B., and Muley, G.G.: Laser induced optical and microscopic studies of salicylic acid influenced KH2PO4 crystal for photonic device applications. Mater. Technol. 32, 560 (2017).CrossRefGoogle Scholar
Rajesh, P. and Ramasamy, P.: Optical, dielectric and microhardness studies on 〈100〉 directed ADP crystal. Spectrochim. Acta, Part A 74, 210 (2009).CrossRefGoogle ScholarPubMed
Anbukumar, S., Vasudevan, S., and Ramasamy, P.: Microhardness studies of ADP type crystals. J. Mater. Sci. Lett. 5, 223 (1986).CrossRefGoogle Scholar
Meenakshisundaram, S., Parthiban, S., Madhurambal, G., Dhanasekaran, R., and Mojumdar, S.: Effect of complexing agent (1,10-phenanthroline) on ADP and KDP crystals. J. Therm. Anal. Calorim. 94, 15 (2008).CrossRefGoogle Scholar