Skip to main content
×
Home
    • Aa
    • Aa

Phosphorene: An emerging 2D material

  • Kiho Cho (a1), Jiong Yang (a1) and Yuerui Lu (a1)
Abstract
Abstract

Phosphorene has recently gained tremendous interest in the current decade, specifically, black phosphorus monolayer, a unique 2D material, investigation of which has led toward the creation of new scientific discoveries for future optoelectronic sensor devices. Beyond the success of graphene and other 2D layered materials research over the past decades, the increased interest toward this new emerging single-element structured material is because of its layer dependent 0.3–2.0 eV band gap modulation range which is also the band gap modulation range of single- and few-layered graphene and transition metal dichalcogenides (TMDs). Besides that, phosphorene allows strong light-matter interactions at resonance because of its unique physical structure and outstanding electrical and optical properties. Therefore, current advancements are being done to enhance the performance of phosphorene thin films because of its applicability in different fields. This paper is aimed to highlight key properties, applications, and future perspects and challenges incurred regarding the use of 2D layered phosphorene.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phosphorene: An emerging 2D material
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Phosphorene: An emerging 2D material
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Phosphorene: An emerging 2D material
      Available formats
      ×
Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: yuerui.lu@anu.edu.au
Footnotes
Hide All

Contributing Editor: Venkatesan Renugopalakrishnan

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1. LeeS.Y., DuongD.L., VuQ.A., JinY., KimP., and LeeY.H.: Chemically modulated band gap in bilayer graphene memory transistors with high on/off ratio. ACS Nano 9(9), 9034 (2015).
2. ZhangS.J., LinS.S., LiX.Q., LiuX.Y., WuH.A., XuW.L., WangP., WuZ.Q., ZhongH.K., and XuZ.J.: Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells. Nanoscale 8(1), 226 (2016).
3. PapagnoM., RusponiS., SheverdyaevaP.M., VlaicS., EtzkornM., PaciléD., MorasP., CarboneC., and BruneH.: Large band gap opening between graphene dirac cones induced by Na adsorption onto an Ir superlattice. ACS Nano 6(1), 199 (2012).
4. DvorakM., OswaldW., and WuZ.: Bandgap opening by patterning graphene. Sci. Rep. 3, 2289 (2013).
5. ZhouS.Y., GweonG.H., FedorovA.V., FirstP.N., de HeerW.A., LeeD.H., GuineaF., Castro NetoA.H., and LanzaraA.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770 (2007).
6. HanM.Y., OzyilmazB., ZhangY., and KimP.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007).
7. GeimA.K. and NovoselovK.S.: The rise of graphene. Nat. Mater. 6(3), 183 (2007).
8. RamasubramaniamA., NavehD., and ToweE.: Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 84(20), 205325 (2011).
9. ChernikovA., BerkelbachT.C., HillH.M., RigosiA., LiY., AslanO.B., ReichmanD.R., HybertsenM.S., and HeinzT.F.: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113(7), 076802 (2014).
10. MouriS., MiyauchiY., and MatsudaK.: Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944 (2013).
11. KimJ., BaikS.S., RyuS.H., SohnY., ParkS., ParkB-G., DenlingerJ., YiY., ChoiH.J., and KimK.S.: Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349(6249), 723 (2015).
12. BolotinK.I., SikesK., JiangZ., KlimaM., FudenbergG., HoneJ., KimP., and StormerH.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351 (2008).
13. LarentisS., FallahazadB., and TutucE.: Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101(22), 223104 (2012).
14. LiuH., NealA.T., ZhuZ., TomanekD., and YeP.D.: Phosphorene: A new 2D material with high carrier mobility. arXiv preprint arXiv:1401.4133 (2014).
15. PereraM.M., LinM-W., ChuangH-J., ChamlagainB.P., WangC., TanX., ChengM.M-C., TománekD., and ZhouZ.: Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449 (2013).
16. WuW., DeD., ChangS-C., WangY., PengH., BaoJ., and PeiS-S.: High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 102(14), 142106 (2013).
17. SzafranekB.N., SchallD., OttoM., NeumaierD., and KurzH.: High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett. 11(7), 2640 (2011).
18. LiuH., NealA.T., ZhuZ., LuoZ., XuX., TománekD., and YeP.D.: Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033 (2014).
19. UrichA., UnterrainerK., and MuellerT.: Intrinsic response time of graphene photodetectors. Nano Lett. 11(7), 2804 (2011).
20. BuscemaM., GroenendijkD.J., BlanterS.I., SteeleG.A., van der ZantH.S., and Castellanos-GomezA.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347 (2014).
21. TranV., SoklaskiR., LiangY., and YangL.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B: Condens. Matter Mater. Phys. 89(23), 235319 (2014).
22. LiL., KimJ., JinC., YeG., QiuD.Y., da JornadaF.H., ShiZ., ChenL., ZhangZ., and YangF.: Direct observation of layer-dependent electronic structure in phosphorene. arXiv preprint arXiv:1601.03103 (2016).
23. XuR., YangJ., ZhuY., YanH., PeiJ., MyintY.W., ZhangS., and LuY.: Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene–gold hybrid systems. Nanoscale 8(1), 129 (2016).
24. DasS., ZhangW., DemarteauM., HoffmannA., DubeyM., and RoelofsA.: Tunable transport gap in phosphorene. Nano Lett. 14(10), 5733 (2014).
25. PengX., WeiQ., and CoppleA.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085402 (2014).
26. SaB., LiY-L., QiJ., AhujaR., and SunZ.: Strain engineering for phosphorene: The potential application as a photocatalyst. J. Phys. Chem. C 118(46), 26560 (2014).
27. WoomerA.H., FarnsworthT.W., HuJ., WellsR.A., DonleyC.L., and WarrenS.C.: Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9(9), 8869 (2015).
28. ZilettiA., CarvalhoA., TrevisanuttoP., CampbellD., CokerD., and NetoA.C.: Phosphorene oxides: Band gap engineering of phosphorene by oxidation. Phys. Rev. B: Condens. Matter Mater. Phys. 91(8), 085407 (2015).
29. LuJ., WuJ., CarvalhoA., ZilettiA., LiuH., TanJ., ChenY., Castro NetoA., ÖzyilmazB., and SowC.H.: Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9(10), 10411 (2015).
30. DaiJ. and ZengX.C.: Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289 (2014).
31. PadilhaJ., FazzioA., and da SilvaA.J.: van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 114(6), 066803 (2015).
32. HuT. and HongJ.: Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures. ACS Appl. Mater. Interfaces 7(42), 23489 (2015).
33. KoenigS.P., DoganovR.A., SeixasL., CarvalhoA., TanJ.Y., WatanabeK., TaniguchiT., YakovlevN., Castro NetoA.H., and ÖzyilmazB.: Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16(4), 2145 (2016).
34. KulishV.V., MalyiO.I., PerssonC., and WuP.: Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992 (2015).
35. TakagaharaT. and TakedaK.: Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B: Condens. Matter Mater. Phys. 46(23), 15578 (1992).
36. QinG., YanQ-B., QinZ., YueS-Y., HuM., and SuG.: Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17(7), 4854 (2015).
37. WeiQ. and PengX.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014).
38. WangL., KutanaA., ZouX., and YakobsonB.I.: Electro-mechanical anisotropy of phosphorene. Nanoscale 7(21), 9746 (2015).
39. QiaoJ., KongX., HuZ-X., YangF., and JiW.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).
40. ZhangS., YangJ., XuR., WangF., LiW., GhufranM., ZhangY-W., YuZ., ZhangG., and QinQ.: Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8(9), 9590 (2014).
41. WangX., JonesA.M., SeylerK.L., TranV., JiaY., ZhaoH., WangH., YangL., XuX., and XiaF.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517 (2015).
42. XuR., ZhangS., WangF., YangJ., WangZ., PeiJ., MyintY.W., XingB., YuZ., and FuL.: Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. ACS Nano 10(2), 2046 (2016).
43. TranV., SoklaskiR., LiangY., and YangL.: Layer-controlled band gap and anisotropic excitons in phosphorene transport. Phys. Rev. B 89(23), 235319 (2014).
44. ZilettiA., CarvalhoA., CampbellD.K., CokerD.F., and NetoA.C.: Oxygen defects in phosphorene. Phys. Rev. Lett. 114(4), 046801 (2015).
45. LuoX., RahbarihaghY., HwangJ.C., LiuH., DuY., and PeideD.Y.: Temporal and thermal stability of Al2O3-passivated phosphorene mosfets. IEEE Electron Device Lett. 35(12), 1314 (2014).
46. ZhuH., McDonnellS., QinX., AzcatlA., ChengL., AddouR., KimJ., YeP.D., and WallaceR.M.: Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Interfaces 7(23), 13038 (2015).
47. PeiJ., GaiX., YangJ., WangX., YuZ., ChoiD-Y., Luther-DaviesB., and LuY.: Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).
48. AvsarA., Vera-MarunI.J., TanJ.Y., WatanabeK., TaniguchiT., Castro NetoA.H., and OzyilmazB.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9(4), 4138 (2015).
49. BaoW., CaiX., KimD., SridharaK., and FuhrerM.S.: High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013).
50. TayariV., HemsworthN., FakihI., FavronA., GaufrèsE., GervaisG., MartelR., and SzkopekT.: Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6, 7702 (2015).
51. ZhuW., YogeeshM.N., YangS., AldaveS.H., KimJ-S., SondeS., TaoL., LuN., and AkinwandeD.: Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15(3), 1883 (2015).
52. AppalakondaiahS., VaitheeswaranG., LebegueS., ChristensenN.E., and SvaneA.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B: Condens. Matter Mater. Phys. 86(3), 035105 (2012).
53. WuF., QuF., and MacDonaldA.: Exciton band structure of monolayer MoS2 . Phys. Rev. B: Condens. Matter Mater. Phys. 91(7), 075310 (2015).
54. YangJ., XuR., PeiJ., MyintY.W., WangF., WangZ., ZhangS., YuZ., and LuY.: Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 4(7), e312 (2015).
55. RodinA., CarvalhoA., and NetoA.C.: Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 90(7), 075429 (2014).
56. LiL., YuY., YeG.J., GeQ., OuX., WuH., FengD., ChenX.H., and ZhangY.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014).
57. KeyesR.W.: The electrical properties of black phosphorus. Phys. Rev. 92(3), 580 (1953).
58. LiP. and AppelbaumI.: Electrons and holes in phosphorene. Phys. Rev. B: Condens. Matter Mater. Phys. 90(11), 115439 (2014).
59. MaoN., TangJ., XieL., WuJ., HanB., LinJ., DengS., JiW., XuH., and LiuK.: Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138(1), 300 (2015).
60. HuangM., WangM., ChenC., MaZ., LiX., HanJ., and WuY.: Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28(18), 3481 (2016).
61. WoodJ.D., WellsS.A., JariwalaD., ChenK-S., ChoE., SangwanV.K., LiuX., LauhonL.J., MarksT.J., and HersamM.C.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14(12), 6964 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Cho supplementary material
Figure

 Unknown (11.7 MB)
11.7 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 118
Total number of PDF views: 418 *
Loading metrics...

Abstract views

Total abstract views: 965 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2017 - 23rd October 2017. This data will be updated every 24 hours.