Skip to main content Accessibility help

Piezoelectric polymer thin films with architected cuts

  • Lichen Fang (a1), Jing Li (a2), Zeyu Zhu (a1), Santiago Orrego (a1) and Sung Hoon Kang (a1)...
  • Please note a correction has been issued for this article.


Introducing architected cuts is an attractive and simple approach to tune mechanical behaviors of planar materials like thin films for desirable or enhanced mechanical performance. However, little has been studied on the effects of architected cuts on functional materials like piezoelectric materials. We investigated how architected cut patterns affect mechanical and piezoelectric properties of polyvinylidene fluoride thin films by numerical, experimental, and analytical studies. Our results show that thin films with architected cuts can provide desired mechanical features like enhanced compliance, stretchability, and controllable Poisson’s ratio and resonance frequency, while maintaining piezoelectric performance under static loadings. Moreover, we could observe maximum ∼30% improvement in piezoelectric conversion efficiency under dynamic loadings and harvest energy from low frequency (<100 Hz) mechanical signals or low velocity (<5 m/s) winds, which are commonly existing in ambient environment. Using architected cuts doesn't require changing the material or overall dimensions, making it attractive for applications in self-powered devices with design constraints.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Christopher Spadaccini



Hide All
1. Valdevit, L., Jacobsen, A.J., Greer, J.R., and Carter, W.B.: Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 120 (2011).
2. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 10381040 (1987).
3. Choi, J.B. and Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 80, 7383 (1996).
4. Lowe, A. and Lakes, R.S.: Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157167 (2000).
5. Martz, E.O., Lakes, R.S., Goel, V.K., and Park, J.B.: Design of an artificial intervertebral disc exhibiting a negative Poisson’s ratio. Cell. Polym. 24, 127138 (2005).
6. Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823837 (2011).
7. Osanov, M. and Guest, J.K.: Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46, 211233 (2016).
8. Schaedler, T.A. and Carter, W.B.: Architected cellular materials. Annu. Rev. Mater. Res. 46, 187210 (2016).
9. Bertoldi, K.: Harnessing instabilities to design tunable architected cellular materials. Annu. Rev. Mater. Res. 47, 5161 (2017).
10. Lakes, R.S.: Negative-Poisson’s-ratio materials: Auxetic solids. Annu. Rev. Mater. Res. 47, 6381 (2017).
11. Overvelde, J.T.B., Weaver, J.C., Hoberman, C., and Bertoldi, K.: Rational design of reconfigurable prismatic architected materials. Nature 541, 347352 (2017).
12. Reis, P.M., Jaeger, H.M., and van Hecke, M.: Designer matter: A perspective. Extreme Mech. Lett. 5, 2529 (2015).
13. Bertoldi, K., Reis, P.M., Willshaw, S., and Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361366 (2010).
14. Kim, K., Ju, J., and Kim, D.M.: Porous materials with high negative Poisson’s ratios—A mechanism based material design. Smart Mater. Struct. 22, 084007 (2013).
15. Virk, K., Monti, A., Trehard, T., Marsh, M., Hazra, K., Boba, K., Remillat, C.D.L., Scarpa, F., and Farrow, I.R.: SILICOMB PEEK kirigami cellular structures: Mechanical response and energy dissipation through zero and negative stiffness. Smart Mater. Struct. 22, 084014 (2013).
16. Taylor, M., Francesconi, L., Gerendas, M., Shanian, A., Carson, C., and Bertoldi, K.: Low porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater. 26, 23652370 (2014).
17. Jiang, Y. and Li, Y.: 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv. Eng. Mater. 19, 1600609 (2017).
18. Cho, Y., Shin, J.H., Costa, A., Kim, T.A., Kunin, V., Li, J., Lee, S.Y., Yang, S., Han, H.N., Choi, I.S., and Srolovitz, D.J.: Engineering the shape and structure of materials by fractal cut. Proc. Natl. Acad. Sci. U. S. A. 111, 1739017395 (2014).
19. Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Candido, F., Lewis, J.A., and Bertoldi, K.: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 42964301 (2015).
20. Restrepo, D., Mankame, N.D., and Zavattieri, P.D.: Phase transforming cellular materials. Extreme Mech. Lett. 4, 5260 (2015).
21. Liu, J., Gu, T., Shan, S., Kang, S.H., Weaver, J.C., and Bertoldi, K.: Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 28, 66196624 (2016).
22. Shan, S.C., Kang, S.H., Wang, P., Qu, C.Y., Shian, S., Chen, E.R., and Bertoldi, K.: Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 49354942 (2014).
23. Javid, F., Wang, P., Shanian, A., and Bertoldi, K.: Architected materials with ultra-low porosity for vibration control. Adv. Mater. 28, 59435948 (2016).
24. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., and Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. U. S. A. 113, 97229727 (2016).
25. Shan, S., Kang, S.H., Zhao, Z., Fang, L., and Bertoldi, K.: Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech. Lett. 4, 96102 (2015).
26. Tang, Y.C., Lin, G.J., Han, L., Qiu, S.G., Yang, S., and Yin, J.: Design of hierarchically cut hinges for highly stretchable and reconfigurable metamaterials with enhanced strength. Adv. Mater. 27, 71817190 (2015).
27. Sodano, H.A., Inman, D.J., and Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197206 (2004).
28. Toprak, A. and Tigli, O.: Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1, 031104 (2014).
29. Rajabi, A.H., Jaffe, M., and Arinzeh, T.L.: Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 24, 1223 (2015).
30. Hwang, G-T., Park, H., Lee, J-H., Oh, S., Park, K-I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S-G., Joung, B., and Lee, K.J.: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 48804887 (2014).
31. Lee, K.Y., Gupta, M.K., and Kim, S.W.: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139160 (2015).
32. Hwang, G.T., Kim, Y., Lee, J.H., Oh, S., Jeong, C.K., Park, D.Y., Ryu, J., Kwon, H., Lee, S.G., Joung, B., Kim, D., and Lee, K.J.: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energ. Environ. Sci. 8, 26772684 (2015).
33. Fan, F.R., Tang, W., and Wang, Z.L.: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 42834305 (2016).
34. Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., Zhang, Y., You, Z., and Wang, Z.L.: Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11, 17281735 (2017).
35. Orrego, S., Shoele, K., Ruas, A., Doran, K., Caggiano, B., Mittal, R., and Kang, S.H.: Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 194, 212222 (2017).
36. Smith, W.A.: Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio. Proc. IEEE 1, 661666 (1991).
37. Iyer, S., Alkhader, M., and Venkatesh, T.A.: Electromechanical behavior of auxetic piezoelectric cellular solids. Scr. Mater. 99, 6568 (2015).
38. Li, Q., Kuang, Y., and Zhu, M.L.: Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv. 7, 015104 (2017).
39. Qi, Z., Campbell, D.K., and Park, H.S.: Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014).
40. Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A. and McEuen, P.L.: Graphene kirigami. Nature 524, 204207 (2015).
41. Grima, J.N. and Evans, K.E.: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19, 15631565 (2000).


Type Description Title
Supplementary materials

Fang et al. supplementary material
Fang et al. supplementary material 1

 Word (3.8 MB)
3.8 MB

Piezoelectric polymer thin films with architected cuts

  • Lichen Fang (a1), Jing Li (a2), Zeyu Zhu (a1), Santiago Orrego (a1) and Sung Hoon Kang (a1)...
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: