Skip to main content Accesibility Help
×
×
Home

Piezoresistance in silicon and its nanostructures

  • A.C.H. Rowe (a1)
Abstract

Piezoresistance (PZR) is the change in the electrical resistivity of a solid induced by an applied mechanical stress. Its origin in bulk crystalline materials like silicon is principally a change in the electronic structure which leads to a modification of the effective mass of charge carriers. The past few years have seen a rising interest in the PZR properties of semiconductor nanostructures, motivated in part by claims of a giant PZR (GPZR) in silicon nanowires more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counterclaims of GPZR in silicon nanostructures by summarizing the major works carried out over the past 10 years. The main conclusions to be drawn from the literature are that (i) reproducible evidence for a GPZR in ungated nanowires is limited; (ii) in gated nanowires, GPZR has been reproduced by several authors; (iii) the giant effect is fundamentally different from either the bulk silicon PZR or that resulting from quantum confinement, the evidence pointing to an electrostatic origin; (iv) released nanowires tend to have slightly larger PZR than unreleased nanowires; and (v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: alistair.rowe@polytechnique.edu
References
Hide All
1.Bridgman, P.W.: The electrical resistance of metals under pressure. Proc. Am. Acad. Arts Sci. 52, 573 (1917).
2.Bridgman, P.W.: The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm². Proc. Am. Acad. Arts Sci. 81, 165 (1952).
3.Fu, L., Kane, C.L., and Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
4.Wolfe, J.C.: Summary of the Kronig-Penney electron. Am. J. Phys. 46, 1012 (1978).
5.Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954).
6.Tufte, O.N. and Stelzer, E.L.: Piezoresistive properties of heavily doped n-type silicon. J. Appl. Phys. 34, 313 (1963).
7.Herring, C. and Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956).
8.Aubrey, J., Gubler, W., Henningsen, T., and Koenig, S.: Piezoresistance and piezo-Hall-effect in n-type silicon. Phys. Rev. 130, 1667 (1963).
9.Milne, J.S., Favorskiy, I., Rowe, A.C.H., Arscott, S., and Renner, C.: Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa. Phys. Rev. Lett. 108, 256801 (2012).
10.Kanda, Y.: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29, 64 (1982).
11.Adams, E.: Elastoresistance in p-type Ge and Si. Phys. Rev. 96, 803 (1954).
12.Ohmura, Y.: Piezoresistance effect in p-type Si. Phys. Rev. B 42, 9178 (1990).
13.Suzuki, K., Hasegawa, H., and Kanda, Y.: Origin of the linear and nonlinear piezoresistance effects in p-type silicon. Jpn. J. Appl. Phys. 23, L871 (1984).
14.Kleimann, P., Semmache, B., Le Berre, M., and Barbier, D.: Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57, 8966 (1998).
15.Richter, J., Pedersen, J., Brandbyge, M., Thomsen, E., and Hansen, O.: Piezoresistance in p-type silicon revisited. J. Appl. Phys. 104, 023715 (2008).
16.Thompson, S., Sun, G., Choi, Y., and Nishida, T.: Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010 (2006).
17.Fan, X., Register, L., Winstead, B., Foisy, M., Chen, W., Zheng, X., Ghosh, B., and Banerjee, S.: Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa. IEEE Trans. Electron Devices 54, 291 (2007).
18.He, R. and Yang, P.: Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42 (2006).
19.Matsuda, K., Kanda, Y., Yamamura, K., and Suzuki, K.: Second-order piezoresistance coefficients of p-type silicon. Jap. J. Appl. Phys. 29, L1941 (1990).
20.Matsuda, K., Suzuki, K., Yamamura, K., and Kanda, Y.: Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838 (1993).
21.Shifren, L., Wang, X., Matagne, P., Obradovic, B., Auth, C., Cea, S., Ghani, T., He, J., Hoffman, T., Kotlyar, R., Ma, Z., Mistry, K., Nagisetty, R., Shaheed, R., Stettler, M., Weber, C., Giles, M.D.: Drive current enhancement in p-type metal–oxide–semiconductor field-effect transistors under shear uniaxial stress. Appl. Phys. Lett. 85, 6188 (2004).
22.Tsang, Y., O’Neill, A., Gallacher, B., and Olsen, S.: Using piezoresistance model with cr conversion for modeling of strain-induced mobility. IEEE Trans. Electron Devices 29, 1062 (2008).
23.Kozlovskiy, S.I. and Sharan, N.N.: Piezoresistive effect in p-type silicon classical nanowires at high uniaxial strains. J. Comput. Electron. 10, 258 (2011).
24.Dorda, G.: Effective mass change of electrons in silicon inversion layers observed by piezoresistance. Appl. Phys. Lett. 17, 406 (1970).
25.Dorda, G.: Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053 (1971).
26.Eisele, I.: Stress and intersubband correlation in the silicon inversion layer. Surf. Sci. 73, 315 (1978).
27.Dorda, G., Eisele, I., and Gesch, H.: Many-valley interactions in n-type silicon inversion layers. Phys. Rev. B 17, 1785 (1978).
28.Shkolnikov, Y.P., Vakili, K., De Poortere, E.P., and Shayegan, M.: Giant low-temperature piezoresistance effect in AlAs two-dimensional electrons. Appl. Phys. Lett. 85, 3766 (2004).
29.Habib, B., Shabani, J., De Poortere, E.P., Shayegan, M., and Winkler, R.: Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes. Appl. Phys. Lett. 91, 012107 (2007).
30.Yasutada, T., Toriyama, T., and Sugiyama, S.: Characteristics of polycrystalline Si nano wire piezoresistors. In Proceedings of the Technical Digest of the Sensor Symposium, Interlaken, Switzerland. Vol. 17, 1999; 195.
31.Toriyama, T., Tanimoto, Y., and Sugiyama, S.: Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromech. Syst. 11, 605 (2002).
32.Toriyama, T., Funai, D., and Sugiyama, S.: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561 (2003).
33.Beaty, R.E., Jaeger, R.C., Suhling, J.C., Johnson, R.W., and Butler, R.D.: Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture. IEEE Trans. Comp. Hyb. Man. Tech. 15, 904 (1992).
34.Cao, J.X., Gong, X.G., and Wu, R.Q.: Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007).
35.Shiri, D., Kong, Y., Buin, A., and Anantram, M.P.: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).
36.Nakamura, K., Dao, D.V., Tung, B.T., Toriyama, T., and Sugiyama, S.: Piezoresistive effect in silicon nanowires—a comprehensive analysis based on first-principles calculations. International symposium on Micro-NanoMechanics and Human Science, 2009. 2009; 38.
37.Leu, P.W., Svizhenko, A., and Cho, K.: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).
38.Niquet, Y-M., Delerue, C., and Krzeminski, C.: Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).
39.Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
40.Zhao, X., Wei, C.M., Yang, L., and Chou, M.Y.: Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805 (2004).
41.Rowe, A.C.H.: Silicon nanowires feel the pinch. Nat. Nanotech. 3, 312 (2008).
42.Nghiem, T.T., Aubry-Fortuna, V., Chassat, C., Bosseboeuf, A., and Dollfus, P.: Monte Carlo simulation of giant piezoresistance effect in p-type silicon nanostructures. Mod. Phys. Lett. B 25, 995 (2011).
43.Hamada, A. and Takeda, E.: Hot-electron trapping activation energy in PMOSFET's under mechanical stress. IEEE Trans. Electron Devices 15, 31 (1994).
44.Xiao, Z., She, J., Deng, S., and Xu, N.: Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain. J. Appl. Phys. 110, 114323 (2011).
45.Kumar Bhaskar, U., Pardoen, T., Passi, V., and Raskin, J-P.: Surface states and conductivity of silicon nano-wires. J. Appl. Phys. 113, 134502 (2013).
46.Reck, K., Richter, J., Hansen, O., and Thomsen, E.V.: Piezoresistive effect in top-down fabricated silicon nanowires. International Conference on Micro Electro Mechanical Systems, Tuscon, AZ, 2008. Vol. 217. 2008.
47.Bui, T.T., Dao, D.V., Nakamura, K., Toriyama, T., and Sugiyama, S.: Evaluation of the piezoresistive effect in single crystalline silicon nanowires. IEEE Sens. 1-3, 41 (2009).
48.Reck, K., Richter, J., Hansen, O., and Thomsen, E.V.: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. NTSI Nanotech. 1, 920 (2008).
49.Milne, J.S., Rowe, A.C.H., Arscott, S., and Renner, C.: Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010).
50.Koumela, A., Mercier, D., Dupré, C., Jourdan, G., Marcoux, C., Ollier, E., Purcell, S.T., and Duraffourg, L.: Piezoresistance of top-down suspended Si nanowires. Nanotechnology 22, 395701 (2011).
51.Barwicz, T., Klein, L., Koester, S.J., and Hamann, H.: Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett. 97, 023110 (2010).
52.Rochette, F., Cassé, M., Mouis, M., Haziot, A., Pioger, T., Ghibaudo, G., and Boulanger, F.: Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack. Solid State Electron. 53, 392 (2009).
53.Passi, V., Ravaux, F., Dubois, E., and Raskin, J.P.: Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires. International Conference on Micro Electro Mechanical Systems, Wanchai, Hong Kong, 2010; 464.
54.Kang, T.K.: The piezoresistive effect in n-type junctionless silicon nanowire transistors. Nanotechnology 23, 475203 (2012).
55.Kang, T.K.: Evidence for giant piezoresistance effect in n-type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012).
56.Singh, P., Park, W.T., Miao, J., Shao, L., Krishna Kotlanka, R., and Kwong, D.L.: Tunable piezoresistance and noise in gate-all-around nanowire field-effect-transistor. Appl. Phys. Lett. 100, 063106 (2012).
57.Neuzil, P., Wong, C.C., and Reboud, J.: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248 (2010).
58.Yang, Y. and Li, X.: Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011).
59.Lugstein, A., Steinmair, M., Steiger, A., Kosina, H., and Bertagnolli, E.: Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204 (2010).
60.Zhang, Y., Liu, X.Y., Ru, C.H., Zhang, Y.L., Dong, L.X., and Sun, Y.: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959 (2011).
61.Wortman, J.J. and Evans, R.A.: Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).
62.Kumar Bhaskar, U., Pardoen, T., Passi, V., and Raskin, J-P.: Piezoresistance of nano-scale silicon up to 2 GPa in tension. Appl. Phys. Lett. 102, 031911 (2013).
63.Vu, D., Arscott, S., Peytavit, E., Ramdani, R., Gil, E., André, Y., Bansropun, S., Gérard, B., Rowe, A.C.H., and Paget, D.: Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces. Phys. Rev. B 82, 115331 (2010).
64.Himpsel, F.J., Hollinger, G., and Pollak, R.A.: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983).
65.Terman, L.M.: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962).
66.Chadi, D.J., Citrin, P.H., Park, C.H., Adler, D.L., Marcus, M.A., and Gossman, H-J.: Fermi-level-pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4843 (1997).
67.Wagner, L.F. and Spicer, W.E.: Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states. Phys. Rev. B 9, 1512 (1974).
68.Anderås, E., Vestling, L., Olsson, J., and Katardjiev, I.: Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms. Proc. Chem. 1, 80 (2009).
69.Pilkey, W.D.: Peterson’s stress concentration factors (Wiley-Interscience, New York, 1997).
70.Bashir, R., Gupta, A., Neudeck, G.W., McElfresh, M., and Gomez, R.: On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10, 483 (2000).
71.Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M.: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).
72.Lang, D.V., Grimmeiss, H.G., Meijer, E., and Jaros, M.: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917 (1980).
73.Auth, C., Allen, C., Blattner, A., and Bergstrom, D.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, Honolulu, HI, 2012; 131.
74.Greeneich, E.W. and Muller, R.S.: Acoustic‐wave detection via a piezoelectric field‐effect transducer. Appl. Phys. Lett. 20, 156 (1972).
75.He, R., Feng, X., Roukes, M.L., and Yang, P.: Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756 (2008).
76.Mile, E., Jourdan, G., Bargatin, I., Labarthe, S., Marcoux, C., Andreucci, P., Hentz, S., Kharrat, C., Colinet, E., and Duraffourg, L.: In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology 21, 165504 (2010).
77.Singh, P., Miao, J., Pott, V., Park, W.T., and Kwong, D.L.: Piezoresistive sensing performance of junctionless nanowire FET. IEEE Electron Devices Lett. 33, 1759 (2012).
78.Zhang, S., Lou, L., and Lee, C.: Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100, 023111 (2012).
79.Sansa, M., Fernandez-Regulez, M., San Paulo, A., and Perez-Murano, F.: Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl. Phys. Lett. 101, 243115 (2012).
80.Allain, P.E., Parrain, F., Bosseboeuf, A., Mâaroufi, S., Coste, P., and Walther, A.: Large-range MEMS motion detection with Subangström noise level using an integrated piezoresistive silicon nanowire. J. Microelectromech. Syst. 22, 716 (2013).
81.Iida, T., Itoh, T., Noguchi, D., and Takano, Y.: Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms. J. Appl. Phys. 87, 675 (2000).
82.Allain, P.E., Le Roux, X., Parrain, F., and Bosseboeuf, A.: Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling. J. Micromech. Microeng. 23, 015014 (2013).
83.Chung, S.W., Yu, J.Y., and Heath, J.R.: Silicon nanowire devices. Appl. Phys. Lett. 76, 2068 (2000).
84.Creemer, J.F., Fruett, F., Meijer, G., and French, P.J.: The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J 1, 98 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed