Skip to main content Accessibility help

Plane-strain Bulge Test for Thin Films

  • Y. Xiang (a1), X. Chen (a2) and J.J. Vlassak (a1)


The plane-strain bulge test is a powerful new technique for measuring the mechanical properties of thin films. In this technique, the stress–strain curve of a thin film is determined from the pressure-deflection behavior of a long rectangular membrane made of the film of interest. For a thin membrane in a state of plane strain, film stress and stain are distributed uniformly across the membrane width, and simple analytical formulae for stress and strain can be established. This makes the plane-strain bulge test ideal for studying the mechanical behavior of thin films in both the elastic and plastic regimes. Finite element analysis confirms that the plane-strain condition holds for rectangular membranes with aspect ratios greater than 4 and that the simple formulae are highly accurate for materials with strain-hardening exponents ranging from 0 to 0.5. The residual stress in the film mainly affects the elastic deflection of the membrane and changes the initial point of yield in the plane-strain stress–strain curve, but has little or no effect on further plastic deformation. The effect of the residual stress can be eliminated by converting the plane-strain curve into the equivalent uniaxial stress–strain relationship using effective stress and strain. As an example, the technique was applied to an electroplated Cu film. Si micromachining was used to fabricate freestanding Cu membranes. Typical experimental results for the Cu film are presented. The data analysis is in good agreement with finite element calculations.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Nix, W.D.: Mechanical properties of thin-films. Metall. Trans. A 20, 2217 (1989).
2Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179 (2000).
3Vinci, R.P. and Vlassak, J.J.: Mechanical behavior of thin films. Ann. Rev. Mater. Sci. 26, 431 (1996).
4Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).
5Venkatraman, R. and Bravman, J.C.: Separation of film thickness and grain-boundary strengthening effects in Al thin-films on Si. J. Mater. Res. 7, 2040 (1992).
6Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation, and Surface Evolution (Cambridge University Press, New York, 2003), p. 6.
7Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
8Chen, X. and Vlassak, J.J.: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001).
9Tsui, T.Y., Vlassak, J.J. and Nix, W.D.: Indentation plastic displacement field: Part I. The case of soft films on hard substrates. J. Mater. Res. 14, 2196 (1999).
10Baker, S.P., Keller-Flaig, R.M. and Shu, J.B.: Bauschinger effect and anomalous thermomechanical deformation induced by oxygen in passivated thin Cu films on substrates. Acta Mater. 51, 3019 (2003).
11Haque, M.A. and Saif, M.T.A.: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. USA. 101, 6335 (2004).
12Huang, H.B. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).
13Read, D.T., Cheng, Y.W., Keller, R.R. and McColskey, J.D.: Tensile properties of free-standing aluminum thin films. Scripta Mater. 45, 583 (2001).
14Espinosa, H.D., Prorok, B.C. and Peng, B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667 (2004).
15Vlassak, J.J. and Nix, W.D.: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).
16Beams, J.W. Mechanical properties of thin films of gold and silver, in Structure and Properties of Thin Films, edited by Neugebauer, C.A., Newkirk, J.B., and Vermilyea, D.A. (John Wiley and Sons, New York, 1959), p. 183.
17Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I.: Mechanical property measurements of thin-films using load deflection of composite rectangular membranes. Sens. Actuators 20, 135 (1989).
18Hencky, H.: About the stress state in circular plates with negligible bending stiffness. Z. Math. Phys. 63, 311 1915 , in German.
19Vlassak, J.J. New experimental techniques and analysis methods for the study of mechanical properties of materials in small volumes. Ph.D. Dissertation, Stanford University, Stanford, CA, 1994.
20Levy, S. Large deflection theory for rectangular plates, in Non-linear Problems in Mechanics of Continua, edited by Reissner, E., Prager, W., and Stoker, J.J. (Proc. Symposia. Appl. Math. I, Am. Math. Soc., New York, 1949), p. 197.
21Lin, P. The in-situ measurement of mechanical properties of multi-layer coatings. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1990.
22Timoshenko, S. and Woinowsky-Krieger, S.: Theory of Plates and Shells (McGraw-Hill, New York, 1959), p. 580.
23Itozaki, H. Mechanical properties of composition modulated copper-palladium foils. Ph.D. Dissertation, Northwestern University, Evanston, IL, 1982.
24Small, M.K. and Nix, W.D.: Analysis of the accuracy of the bulge test in determining the mechanical properties of thin-films. J. Mater. Res. 7, 1553 (1992).
25Small, M.K., Vlassak, J.J. and Nix, W.D. Re-examining the bulge test: Methods for improving accuracy and reliability, in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 257.
26Xiang, Y., Chen, X. and Vlassak, J.J. The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique, in Thin Films: Stresses and Mechanical Properties IX, edited by Ozkan, C.S., Freund, L.B., Cammarata, R.C., and Gao, H. (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 189.
27Maseeh, F. and Senturia, S.D. Viscoelasticity and creep recovery of polyimide thin films, in Technical Digest. IEEE Solid-State Sensor and Actuator Workshop, edited by IEEE (IEEE, NY, 1990), p. 55.
28Xiang, Y., Tsui, T.Y., Vlassak, J.J., and McKerrow, A.J.: Measuring the elastic modulus and ultimate strength of low-k dielectric materials by means of the bulge test, in the Proceedings of IEEE 2004 International Interconnect Technology Conference, edited by IEEE (IEEE, Piscataway, NJ, 2004), p. 133.
29Perez-Prado, M.T. and Vlassak, J.J.: Microstructural evolution in electroplated Cu thin films. Scripta Mater. 47, 817 (2002).
30Xiang, Y. and Vlassak, J.J.: Bauschinger effect in thin metal films. Scripta Mater. 53, 177 (2005).
31Dieter, G.E.: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986), p. 287.
32Freund, L.B., personal communication (1995).
33Azrin, M. and Backofen, W.A.: The deformation and failure of a biaxially stretched sheet. Metall. Trans. 1, 2857 (1970).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed