Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fujisawa, Naoki Ogura, Tomo and Hirose, Akio 2016. A Method for Studying the Nano-Scale Stress-Strain Response of a Material by Nanoindentation. MATERIALS TRANSACTIONS, Vol. 57, Issue. 6, p. 1006.

    Sprouster, D.J. Ruffell, S. Bradby, J.E. Stauffer, D.D. Major, R.C. Warren, O.L. and Williams, J.S. 2014. Quantitative electromechanical characterization of materials using conductive ceramic tips. Acta Materialia, Vol. 71, p. 153.


Plastic response of the native oxide on Cr and Al thin films from in situ conductive nanoindentation

  • Douglas D. Stauffer (a1), Ryan C. Major (a2), David Vodnick (a2), John H. Thomas (a3), Jeff Parker (a4), Mike Manno (a4), Chris Leighton (a4) and William W. Gerberich (a4)
  • DOI:
  • Published online: 05 January 2012

Thin native oxide layers can dominate the mechanical properties of metallic thin films. However, to date there has been little quantification of how such overlayers affect yield and fracture during indentation in constrained film systems. To gain insight into such processes, electrical contact resistance was measured in situ during nanoindentation on constrained thin films of epitaxial Cr and polycrystalline Al, both possessing a native oxide overlayer. Measurements during loading of the films show both increases and decreases in current, which can then be used to distinguish between various sources of plasticity. Ex situ measurements of the oxide thickness are used to provide a starting point for elasticity simulations of stress in both systems. The results show that dislocation nucleation in the metal film can be differentiated from oxide fracture during indentation.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.N. Gane and F.P. Bowden : Microdeformation of solids. J. Appl. Phys. 39(3), 1432 (1968).

2.W.W. Gerberich , J.C. Nelson , E.T. Lilleodden , P. Anderson , and J.T. Wyrobek : Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44(9), 3585 (1995).

3.A.B. Mann and J.B. Pethica : The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69(7), 907 (1996).

4.D. Kramer , H. Huang , M. Kriese , J. Robach , J. Nelson , A. Wright , D. Bahr , and W.W. Gerberich : Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47(1), 333 (1999).

5.D.F. Bahr , D.E. Kramer , and W.W. Gerberich : Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10), 3605 (1997).

6.D.E. Kramer , K.B. Yoder , and W.W. Gerberich : Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A 81(8), 2033 (2000).

8.W.A. Soer , K.E. Aifantis , and J.T.M. De Hosson : Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic materials. Acta Mater. 53, 4665 (2005).

10.R. Nowak , D. Chrobak , S. Nagao , D. Vodnick , M. Berg , A. Tukiainen , and M. Pessa : An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).

11.S.P. Sharma and J.H.I. Thomas : Dielectric breakdown of Ag2S in the Au-Ag2S-Ag system. J. Appl. Phys. 47(5), 1808 (1975).

13.B. Bhushan , M. Palacio , and B. Kinzig : AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317, 275 (2008).

14.J.B. Pethica and D. Tabor : Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).

15.D.I. Kim , N. Pradeep , F.W. DelRio , and R.F. Cook : Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Appl. Phys. Lett. 93, 203102 (2008).

17.R. Holm : Electric Contacts. (Springer-Verlag, Berlin/Heidelberg/New York, 1967), pp. 155, 367–397.

19.L. Kogut and K. Komvopoulos : Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 94(5), 3153 (2003).

21.B. Nikolić and P.B. Allen : Electron transport through a circular constriction. Phys. Rev. B 60(6), 3963 (1998).

22.G. Wexler : The size effect and the non-local Boltzmann transport equation in orifice and disk geometry. Proc. Phys. Soc. 89, 927 (1966).

24.L. Kogut and K. Komvopoulos : Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. J. Appl. Phys. 95(2), 576 (2003).

25.A. Matthiessen and C. Vogt : On the influence of temperature on the electric conductive-power of alloys. Philos. Trans. R Soc. London 154, 167 (1864).

26.R. Zuercher , M. Mueller , F. Sachslehner , V. Groeger , and M. Zehetbauer : Dislocation resistivity in Cu: Dependence of the deviations from Matthiessen’s rule on temperature, dislocation density, and impurity content. J. Phys. Condens. Matter 7, 3515 (1995).

27.B.R. Watts : Calculation of electrical resistivity produced by dislocations in various metals. J. Phys. F: Met. Phys. 18, 1197 (1988).

28.B. Sipos , N. Barisic , R. Gaal , L. Forro , J. Karpinski , and F. Rullier-Albenque : Matthiessen’s rule in MgB2: Resistivity and Tc as a function of point defect concentration. Phys. Rev. B 76, 132504 (2007).

29.G. Salomonsen , N. Norman , O. Lonsjo , and T.G. Finstad : Kinetics and mechanism of oxide formation on titanium, vanadium, and chromium thin films. J. Less Common Met. 158, 251 (1990).

30.K. Tamura , Y. Kimura , H. Suzuki , O. Kido , T. Sato , T. Tanigaki , M. Kurumada , Y. Saito , and C. Kaito : Structure and thickness of natural oxide layer on ultrafine particle. Jpn. J. Appl. Phys. 42(12), 7489 (2003).

31.J.S. Moodera , E.F. Gallagher , K. Robinson , and J. Nowak : Optimum tunnel barrier in ferromagnetic-insulator-ferromagnetic tunneling structures. Appl. Phys. Lett. 70(22), 3050 (1997).

32.R.W.J. Chia , C.C. Wang , and J.J.K. Lee : Effect of adatom mobility and substrate finish on film morphology and porosity: Thin chromium film on hard disk. J. Magn. Magn. Mater. 209, 45 (2000).

33.J. Parker , L. Wang , K.A. Steiner , P.A. Crowell , and C.L. Leighton : Exchange bias as a probe of the incommensurate spin-density wave in epitaxial Fe/Cr (001). Phys. Rev. Lett. 97, 227206 (2006).

35.R. Cheng , C.N. Borca , B. Xu , L. Yuan , B. Doudin , S.H. Liou , and P.A. Dowben : Oxidation of metals at the chromium oxide interface. Appl. Phys. Lett. 81(11), 2109 (2002).

36.I. Ikemoto , I. Kikujiro , S. Kinoshita , H. Kuroda , M.A. Alario Franco , and J.M. Thomas : X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds. J. Solid State Chem. 17(4), 425 (1976).

38.J.E. Castle , H. Chapman-Kpodo , A. Proctor , and A.M. Salvi : Curve-fitting in XPS using extrinsic and intrinsic background structure. J. Electron. Spectrosc. Relat. Phenom. 106, 65 (2000).

39.M. Aronniemi , J. Sainio , and J. Lahtinen : Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surf. Sci. 578, 108 (2005).

40.C.S. Fadley : Instrumentation for surface studies: XPS angular distributions. J. Electron. Spectrosc. Relat. Phenom. 5(1), 725 (1974).

42.M.P. Seah and W.A. Dench : Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2 (1979).

45.O.L. Warren , S.A. Downs , and T.J. Wyrobek : Challenges and interesting observations associated with feedback-controlled nanoindentation. Z. Metallkd. 95, 287 (2004).

46.J.S. Villarrubia : Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Nat. Inst. Stand. Technol. 102, 425 (1997).

48.V. Provenzano , R. Valiev , D.G. Rickerby , and G. Valdre : Mechanical properties of nanostructured chromium. Nanostruct. Mater. 12, 1103 (1999).

49.S.A. Firstov , T.G. Rogul , and S.N. Dub : Grain boundary engineering of nanostructured chromium films, in Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, edited by J. Lee , N. Novikov , and V. Turkevich (Springer, Netherlands, 2005) pp. 225232.

50.M.S. Bobji , S.K. Biswas , and J.B. Pethica : Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71(8), 1059 (1997).

51.W.W. Gerberich , N.I. Tymiak , J.C. Grunlan , M.F. Horstemeyer , and M.I. Baskes : Interpretations of indentation size effects. J. Appl. Mech. 69(4), 433 (2002).

52.H. Habbab , B.G. Mellor , and S. Syngellakis : Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Mater. 54(7), 1965 (2006).

53.R. Saha and W.D. Nix : Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).

54.T. Ohmura , S. Matsuoka , K. Tanaka , and T. Yoshida : Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385(1-2), 198 (2001).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *