Skip to main content
×
Home
    • Aa
    • Aa

Plastic response of the native oxide on Cr and Al thin films from in situ conductive nanoindentation

  • Douglas D. Stauffer (a1), Ryan C. Major (a2), David Vodnick (a2), John H. Thomas (a3), Jeff Parker (a4), Mike Manno (a4), Chris Leighton (a4) and William W. Gerberich (a4)...
Abstract
Abstract

Thin native oxide layers can dominate the mechanical properties of metallic thin films. However, to date there has been little quantification of how such overlayers affect yield and fracture during indentation in constrained film systems. To gain insight into such processes, electrical contact resistance was measured in situ during nanoindentation on constrained thin films of epitaxial Cr and polycrystalline Al, both possessing a native oxide overlayer. Measurements during loading of the films show both increases and decreases in current, which can then be used to distinguish between various sources of plasticity. Ex situ measurements of the oxide thickness are used to provide a starting point for elasticity simulations of stress in both systems. The results show that dislocation nucleation in the metal film can be differentiated from oxide fracture during indentation.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: stauffer@umn.edu
References
Hide All
1.Gane N. and Bowden F.P.: Microdeformation of solids. J. Appl. Phys. 39(3), 1432 (1968).
2.Gerberich W.W., Nelson J.C., Lilleodden E.T., Anderson P., and Wyrobek J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44(9), 3585 (1995).
3.Mann A.B. and Pethica J.B.: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69(7), 907 (1996).
4.Kramer D., Huang H., Kriese M., Robach J., Nelson J., Wright A., Bahr D., and Gerberich W.W.: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47(1), 333 (1999).
5.Bahr D.F., Kramer D.E., and Gerberich W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10), 3605 (1997).
6.Kramer D.E., Yoder K.B., and Gerberich W.W.: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A 81(8), 2033 (2000).
7.Pethica J.B. and Oliver W.C.: Tip surface interactions in STM and AFM. Phys. Scr. T. 19, 61 (1987).
8.Soer W.A., Aifantis K.E., and De Hosson J.T.M.: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic materials. Acta Mater. 53, 4665 (2005).
9.Ruffell S., Bradby J.E., Williams J.S., and Warren O.L.: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22(3), 578 (2007).
10.Nowak R., Chrobak D., Nagao S., Vodnick D., Berg M., Tukiainen A., and Pessa M.: An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).
11.Sharma S.P. and Thomas J.H.I.: Dielectric breakdown of Ag2S in the Au-Ag2S-Ag system. J. Appl. Phys. 47(5), 1808 (1975).
12.Fang L., Muhlstein C.L., Collins J.G., Romasco A.L., and Friedman L.H.: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23(9), 2480 (2008).
13.Bhushan B., Palacio M., and Kinzig B.: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317, 275 (2008).
14.Pethica J.B. and Tabor D.: Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).
15.Kim D.I., Pradeep N., DelRio F.W., and Cook R.F.: Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Appl. Phys. Lett. 93, 203102 (2008).
16.Maxwell J.C.: Treatise on Electricity and Magnetism, Vol. 1, 3rd edition (Dover Publications, New York, NY, 1954).
17.Holm R.: Electric Contacts. (Springer-Verlag, Berlin/Heidelberg/New York, 1967), pp. 155, 367–397.
18.Greenwood J.A. and Tripp J.H.: The elastic contact of rough spheres. Trans. ASME, Series E. J. Appl. Mech. 34(153), 417 (1967).
19.Kogut L. and Komvopoulos K.: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 94(5), 3153 (2003).
20.Sharvin Y.V.: On the possible method for studying fermi surfaces. Zh. Eksp. Teor. Fiz. 48, 984 (1965).
21.Nikolić B. and Allen P.B.: Electron transport through a circular constriction. Phys. Rev. B 60(6), 3963 (1998).
22.Wexler G.: The size effect and the non-local Boltzmann transport equation in orifice and disk geometry. Proc. Phys. Soc. 89, 927 (1966).
23.Tholen A., Erts D., Olin H., Ryen L., and Olsson E.: Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys. Rev. B 61(19), 12725 (2000).
24.Kogut L. and Komvopoulos K.: Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. J. Appl. Phys. 95(2), 576 (2003).
25.Matthiessen A. and Vogt C.: On the influence of temperature on the electric conductive-power of alloys. Philos. Trans. R Soc. London 154, 167 (1864).
26.Zuercher R., Mueller M., Sachslehner F., Groeger V., and Zehetbauer M.: Dislocation resistivity in Cu: Dependence of the deviations from Matthiessen’s rule on temperature, dislocation density, and impurity content. J. Phys. Condens. Matter 7, 3515 (1995).
27.Watts B.R.: Calculation of electrical resistivity produced by dislocations in various metals. J. Phys. F: Met. Phys. 18, 1197 (1988).
28.Sipos B., Barisic N., Gaal R., Forro L., Karpinski J., and Rullier-Albenque F.: Matthiessen’s rule in MgB2: Resistivity and Tc as a function of point defect concentration. Phys. Rev. B 76, 132504 (2007).
29.Salomonsen G., Norman N., Lonsjo O., and Finstad T.G.: Kinetics and mechanism of oxide formation on titanium, vanadium, and chromium thin films. J. Less Common Met. 158, 251 (1990).
30.Tamura K., Kimura Y., Suzuki H., Kido O., Sato T., Tanigaki T., Kurumada M., Saito Y., and Kaito C.: Structure and thickness of natural oxide layer on ultrafine particle. Jpn. J. Appl. Phys. 42(12), 7489 (2003).
31.Moodera J.S., Gallagher E.F., Robinson K., and Nowak J.: Optimum tunnel barrier in ferromagnetic-insulator-ferromagnetic tunneling structures. Appl. Phys. Lett. 70(22), 3050 (1997).
32.Chia R.W.J., Wang C.C., and Lee J.J.K.: Effect of adatom mobility and substrate finish on film morphology and porosity: Thin chromium film on hard disk. J. Magn. Magn. Mater. 209, 45 (2000).
33.Parker J., Wang L., Steiner K.A., Crowell P.A., and Leighton C.L.: Exchange bias as a probe of the incommensurate spin-density wave in epitaxial Fe/Cr (001). Phys. Rev. Lett. 97, 227206 (2006).
34.Fitzsimmons M.R. and Majkrzak C.F.: Application of polarized neutron spectroscopy to studies of artificially structured magnetic materials. Modern Techniques for Characterizing Magnetic Materials, edited by Zhu Y.. (Kluwer, Boston, 2005), pp. 107152.
35.Cheng R., Borca C.N., Xu B., Yuan L., Doudin B., Liou S.H., and Dowben P.A.: Oxidation of metals at the chromium oxide interface. Appl. Phys. Lett. 81(11), 2109 (2002).
36.Ikemoto I., Kikujiro I., Kinoshita S., Kuroda H., Alario Franco M.A., and Thomas J.M.: X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds. J. Solid State Chem. 17(4), 425 (1976).
37.Crist B.V.: Handbook of Monochromatic XPS Spectra, Vol. 1, (XPS International, Inc., Mountain View, CA, 1999).
38.Castle J.E., Chapman-Kpodo H., Proctor A., and Salvi A.M.: Curve-fitting in XPS using extrinsic and intrinsic background structure. J. Electron. Spectrosc. Relat. Phenom. 106, 65 (2000).
39.Aronniemi M., Sainio J., and Lahtinen J.: Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surf. Sci. 578, 108 (2005).
40.Fadley C.S.: Instrumentation for surface studies: XPS angular distributions. J. Electron. Spectrosc. Relat. Phenom. 5(1), 725 (1974).
41.Watts J.F.: An Introduction to Surface Analysis by Electron Spectroscopy. (Oxford University Press, New York, NY, 1990), p. 7.
42.Seah M.P. and Dench W.A.: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2 (1979).
43.Hertz H.: On the contact of elastic solids. J. für reine angewandte Mechanik. Fur die reine und angewandte Mathematik. 92, 151 (1881) (An English translation is available as: Miscellaneous papers by H. Hertz, Eds Schott and Jones, MacMillan, London, 1896).
44.Johnson K.L.: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985), p. 90.
45.Warren O.L., Downs S.A., and Wyrobek T.J.: Challenges and interesting observations associated with feedback-controlled nanoindentation. Z. Metallkd. 95, 287 (2004).
46.Villarrubia J.S.: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Nat. Inst. Stand. Technol. 102, 425 (1997).
47.Schwarzer N.: FilmDoctor, SIO® (Saxonian Institute of Surface Mechanics,Ummanz, Germany, 2011), www.siomec.de.
48.Provenzano V., Valiev R., Rickerby D.G., and Valdre G.: Mechanical properties of nanostructured chromium. Nanostruct. Mater. 12, 1103 (1999).
49.Firstov S.A., Rogul T.G., and Dub S.N.: Grain boundary engineering of nanostructured chromium films, in Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, edited by Lee J., Novikov N., and Turkevich V. (Springer, Netherlands, 2005) pp. 225232.
50.Bobji M.S., Biswas S.K., and Pethica J.B.: Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71(8), 1059 (1997).
51.Gerberich W.W., Tymiak N.I., Grunlan J.C., Horstemeyer M.F., and Baskes M.I.: Interpretations of indentation size effects. J. Appl. Mech. 69(4), 433 (2002).
52.Habbab H., Mellor B.G., and Syngellakis S.: Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Mater. 54(7), 1965 (2006).
53.Saha R. and Nix W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).
54.Ohmura T., Matsuoka S., Tanaka K., and Yoshida T.: Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385(1-2), 198 (2001).
55.Kramer D.E., Volinsky A.A., Moody N.R., and Gerberich W.W.: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150 (2001).
56.Tsui T.Y., Ross C.A., and Pharr G.M.: A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation. J. Mater. Res. 18(6), 1383 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 456 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.