Skip to main content Accesibility Help

PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone

  • Andreas Früh (a1), Hans-Joachim Egelhaaf (a2), Holger Hintz (a1), Dustin Quinones (a1), Christoph J. Brabec (a3), Heiko Peisert (a1) and Thomas Chassé (a1)...

The protective effect of poly(methylmethacrylate) (PMMA) cover layers against the degradation of π-conjugated polymers by ozone and photo-oxidation, respectively, has been investigated by UV/Vis spectroscopy. The PMMA films were cast from solution at thicknesses between 20 and 100 nm on top of films of poly(3-hexylthiophene) and poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]. PMMA layers of more than 65 nm in thickness reduce the oxidation rate of the π-conjugated polymers under 15 ppm of ozone in the dark by more than three orders of magnitude, whereas photo-oxidation rates under dry and humid air remain unaffected. The PMMA cover layers are hardly affected by ambient ozone over thousands of hours. Calculations of ozone and oxygen fluxes through the PMMA films reveal that ozonation rates are limited by the diffusion of ozone, whereas photo-oxidation rates are not limited by the diffusion of oxygen, due to the much larger pressure gradient of the latter.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Fraga Domínguez, I., Distler, A., and Lüer, L.: Stability of organic solar cells: The influence of nanostructured carbon materials. Adv. Energy Mater. 7, 1601320 (2017).
2.Roesch, R., Faber, T., von Hauff, E., Brown, T.M., Lira-Cantu, M., and Hoppe, H.: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1501407 (2015).
3.Lee, J.U., Jung, J.W., Jo, J.W., and Jo, W.H.: Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265 (2012).
4.Grossiord, N., Kroon, J.M., Andriessen, R., and Blom, P.W.M.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2012).
5.Jørgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B., and Krebs, F.C.: Stability of polymer solar cells. Adv. Mater. 24, 580 (2012).
6.Gevorgyan, S.A., Heckler, I.M., Bundgaard, E., Corazza, M., Hösel, M., Søndergaard, R.R., dos Reis Benatto, G.A., Jørgensen, M., and Krebs, F.C.: Improving, characterizing and predicting the lifetime of organic photovoltaics. J. Phys. D Appl. Phys. 50, 103001 (2017).
7.Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Madsen, M., Rubahn, H-G., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives. Appl. Phys. A 122, 255 (2016).
8.Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525 (2014).
9.Salvador, M., Gasparini, N., Perea, J.D., Paleti, S.H., Distler, A., Inasaridze, L.N., Troshin, P.A., Lüer, L., Egelhaaf, H-J., and Brabec, C.: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005 (2017).
10.Lee, H-J., Kim, H-P., Kim, H-M., Youn, J-H., Nam, D-H., Lee, Y-G., Lee, J-G., bin Mohd Yusoff, A.R., and Jang, J.: Solution processed encapsulation for organic photovoltaics. Sol. Energy Mater. Sol. Cells 111, 97 (2013).
11.Ahmad, J., Bazaka, K., Anderson, L.J., White, R.D., and Jacob, M.V.: Materials and methods for encapsulation of OPV: A review. Renew. Sustain. Energy Rev. 27, 104 (2013).
12.Giannouli, M., Drakonakis, V.M., Savva, A., Eleftheriou, P., Florides, G., and Choulis, S.A.: Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16, 1134 (2015).
13.Gaume, J., Taviot-Gueho, C., Cros, S., Rivaton, A., Thérias, S., and Gardette, J-L.: Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells. Sol. Energy Mater. Sol. Cells 99, 240 (2012).
14.Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N.S., Latrèche, M., Czeremuszkin, G., and Wertheimer, M.R.: A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511–512, 349 (2006).
15.Hauch, J.A., Schilinsky, P., Choulis, S.A., Rajoelson, S., and Brabec, C.J.: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).
16.Lewis, J.: Material challenge for flexible organic devices. Mater. Today 9, 38 (2006).
17.Cros, S., de Bettignies, R., Berson, S., Bailly, S., Maisse, P., Lemaitre, N., and Guillerez, S.: Definition of encapsulation barrier requirements: A method applied to organic solar cells. Sol. Energy Mater. Sol. Cells 95, S65 (2011).
18.Hintz, H., Egelhaaf, H.-J., Lüer, L., Hauch, J., Peisert, H., and Chassé, T.: Photodegradation of P3HT–A systematic study of environmental factors. Chem. Mater. 23, 145 (2011).
19.Hintz, H., Egelhaaf, H.-J., Peisert, H., and Chassé, T.: Photo-oxidation and ozonization of poly(3-hexylthiophene) thin films as studied by UV/Vis and photoelectron spectroscopy. Polym. Degrad. Stab. 95, 818 (2010).
20.Chambon, S., Rivaton, A., Gardette, J.L., and Firon, M.: Photo- and thermal degradation of MDMO-PPV:PCBM blends. Sol. Energy Mater. Sol. Cells 91, 394 (2007).
21.Manceau, M., Rivaton, A., Gardette, J-L., Guillerez, S., and Lemaître, N.: The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 94, 898 (2009).
22.Tournebize, A., Seck, M., Vincze, A., Distler, A., Egelhaaf, H-J., Brabec, C.J., Rivaton, A., Peisert, H., and Chassé, T.: Photodegradation of Si-PCPDTBT:PCBM active layer for organic solar cells applications: A surface and bulk investigation. Sol. Energy Mater. Sol. Cells 155, 323 (2016).
23.Cataldo, F. and Omastová, M.: On the ozone degradation of polypyrrole. Polym. Degrad. Stab. 82, 487 (2003).
24.Nowaczyk, J., Czerwiński, W., and Olewnik, E.: Ozonization of electronic conducting polymers: II. Degradation or doping. Polym. Degrad. Stab. 91, 2022 (2006).
25.Nowaczyk, J., Olszowy, P., Cysewski, P., Nowaczyk, A., and Czerwiński, W.: Ozonization of electronic conducting polymers, Part III: The action of ozone on poly[3-pentylthiophene] film. Polym. Degrad. Stab. 93, 1275 (2008).
26.Kang, E.T., Neoh, K.G., Zhang, X., Tan, K.L., and Liaw, D.J.: Surface modification of electroactive polymer films by ozone treatment. Surf. Interface Anal. 24, 51 (1996).
27.Bailey, P.S.: Ozonation in Organic Chemistry, Vol. I (Academic Press, New York, 1978).
28.Chabinyc, M.L., Street, R.A., and Northrup, J.E.: Effects of molecular oxygen and ozone on polythiophene-based thin-film transistors. Appl. Phys. Lett. 90, 123508 (2007).
29.Heeg, J., Kramer, C., Wolter, M., Michaelis, S., Plieth, W., and Fischer, W-J.: Polythiophene—O3 surface reactions studied by XPS. Appl. Surf. Sci. 180, 36 (2001).
30.Sirringhaus, H.: 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).
31.Britigan, N., Alshawa, A., and Nizkorodov, S.A.: Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manage. Assoc. 56, 601 (2006).
32.Lattimer, R.P., Layer, R.W., and Rhee, C.K.: Chapter 7: Ozone degradation and antiozonants. In Gerard Meurant: Atmospheric Oxidation and Antioxidants, Vol. II, Scott, G. ed. (Elsevier B.V., 1993); pp. 363384.
33.Cataldo, F.: The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological aspects. Polym. Degrad. Stab. 73, 511 (2001).
34.Layer, R.W. and Lattimer, R.P.: Protection of rubber against ozone. Rubber chemistry and technology. Rubber Chem. Technol. 63, 426 (1990).
35.Atkinson, R. and Carter, W.P.L.: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437 (1984).
36.Criegee, R.: Mechanismus der ozonolyse. Angew. Chem. 87, 765 (1975).
37.Erickson, E.R., Berntsen, R.A., Hill, E.L., and Kusy, P.: The reaction of ozone with SBR rubbers. Rubber Chem. Technol. 32, 1062 (1959).
38.Strobel, M., Walzak, M.J., Hill, J.M., Lin, A., Karbashewski, E., and Lyons, C.S.: A comparison of gas-phase methods of modifying polymer surfaces. J. Adhes. Sci. Technol. 9, 365 (1995).
39.Pankratov, V.A., Yanson, E.F., Prokof'eva, L.V., and Yur'ev, V.Y.: Influence of the fractional composition of physical anti-agers on the ozone and weather resistance of vulcanisates. Int. J. Polym. Sci. Technol. 26, T34 (1999).
40.Cataldo, F.: On the ozone protection of polymers having non-conjugated unsaturation. Polym. Degrad. Stab. 72, 287 (2001).
41.Tokuda, M., Inoue, K., Utsnumomiya, K., and Hitofude, Y.: ACS Meeting Rubber Division (American Chemical Society, Mexico City, 1989).
42.Choi, S-S.: Migration behaviors of wax to surface in rubber vulcanizates. J. Appl. Polym. Sci. 73, 2587 (1999).
43.Bruck, D. and Engels, H.: Correlation of the structural elements of p-phenzlene diamine derivatives with their antidegradant activitz. Kautsch. Gummi Kunstst. 44, 1014 (1991).
44.Glaze, W.H.: Reaction products of ozone: A review. Environ. Health Perspect. 69, 151 (1986).
45.Rakovsky, S. and Zaikov, G.E.: Ozonisation in Organic Chemistry, Nonolefinic Compounds, Vol. 2 (Academy Press, New York, NY, 1982).
46.Ohm, R.F.: Expandierte polymerkügelchen. Gummi, Fasern, Kunstst. 47, 722 (1994).
47.Kaduk, B.A. and Toby, S.: The reaction of ozone with thiophene in the gas phase. Int. J. Chem. Kinet. 9, 829 (1977).
48.Czerwiñski, W., Nowaczyk, J., and Kania, K.: Ozonization of electronic conducting polymers I. Copolymers based on poly[3-nonylthiophene]. Polym. Degrad. Stab. 80, 93 (2003).
49.Bailey, P.S. and Hwang, H.H.: Ozonation of pheny-substituted thiophenes. J. Org. Chem. 50, 1778 (1985).
50.Rost, H., Ficker, J., Alonso, J.S., Leenders, L., and McCulloch, I.: Air-stable all-polymer field-effect transistors with organic electrodes. Synth. Met. 145, 83 (2004).
51.Zaumseil, J.: P3HT and other polythiophene field-effect transistors. In P3HT Revisited - From Molecular Scale to Solar Cell Devices, Ludwigs, S. ed. (Springer, Heidelberg and Berlin, Germany, 2014); pp. 123124.
52.Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108 (1996).
53.Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S.N., Glatthaar, M., Meyer, T., and Meyer, A.: Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 91, 379 (2007).
54.Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., and Denk, P.: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).
55.Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Knol, J., Hummelen, J.C., van Hal, P.A., and Janssen, R.A.J.: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371 (2003).
56.Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S.J., and Williams, S.P.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839 (2010).
57.Akers, P.W., Hoai Le, N.C., Nelson, A.R.J., McKenna, M., O’Mahony, C., McGillivray, D.J., Gubala, V., and Williams, D.E.: Surface engineering of poly(methylmethacrylate): Effects on fluorescence immunoassay. Biointerphases 12, 02C415 (2017).
58.Klein, R.J., Fischer, D.A., and Lenhart, J.L.: Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle. Langmuir 24, 8187 (2008).
59.Herrera, G.J. and Whitten, J.E.: Photoemission study of the thermal and photochemical decomposition of a urethane-substituted polythiophene. Synth. Met. 128, 317 (2002).
60.Hopkins, J. and Badyal, J.P.S.: XPS and atomic force microscopy of plasma-treated polysulfone. J. Polym. Sci., Part A: Polym. Chem. 348, 1385 (1996).
61.Fujimoto, K., Takebayashi, Y., Inoue, H., and Ikada, Y.: Ozone induced graft polymerization onto polymer surface. J. Polym. Sci., Part A: Polym. Chem. 31, 1035 (1993).
62.Ponter, A.B., Jones, W.R., and Jansen, R.H.: Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbonate and polytetrafluoroethylene. In NASA Technical Memorandum 106460 (Luisiana, 1994). Avalible at:
63.Nie, H-Y., Walzak, M.J., and Mcintyre, N.S.: Atomic force microscopy study of biaxially oriented polypropylene films. J. Mater. Eng. Perform. 13, 451 (2004).
64.Teare, D.O.H., Ton-That, C., and Bradley, R.H.: Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 29, 276 (2000).
65.Wang, T., Dunbar, A.D.F., Staniec, P.A., Pearson, A.J., Hopkinson, P.E., MacDonald, J.E., Lilliu, S., Pizzey, C., Terrill, N.J., Donald, A.M., Ryan, A.J., Jones, R.A.L., and Lidzey, D.G.: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).
66.Matteucci, S., Yampolskii, Y., Freeman, B.D., and Pinnau, I.: Materials Science of Membranes for Gas and Vapor Separation (John Wiley & Sons, Ltd, Chichester, U.K., 2006); pp. 147.
67.Minelli, M. and Sarti, G.C.: Elementary prediction of gas permeability in glassy polymers. J. Membr. Sci. 521, 73 (2017).
68.Biń, A.K.: Ozone solubility in liquids. Ozone Sci. Eng. 28, 67 (2006).
69.Biń, A.K.: Prediction of oxygen and ozone solubility in liquids with the peng-robinson equation of state. Ozone Sci. Eng. 30, 13 (2008).
70.Min, K.E. and Paul, D.R.: Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 26, 1021 (1988).
71.Chiou, J.S. and Paul, D.R.: Sorption and transport of inert gases in PVF2/PMMA blends. J. Appl. Polym. Sci. 32, 4793 (1986).
72.Thermo Scientific: 2011 624 (2011).
73.Mateker, W.R., Heumueller, T., Cheacharoen, R., Sachs-Quintana, I.T., McGehee, M.D., Warnan, J., Beaujuge, P.M., Liu, X., and Bazan, G.C.: Molecular packing and arrangement govern the photo-oxidative stability of organic photovoltaic materials. Chem. Mater. 27, 6345 (2015).
74.Subrahmanyam, C., Bulushev, D.A., and Kiwi-Minsker, L.: Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl. Catal. B Environ. 61, 98 (2005).
75.Itoh, H., Isegame, S., Miura, H., Suzuki, S., and Rusinov, I.M.: Surface loss rate of ozone in a cylindrical tube. Ozone Sci. Eng. 33, 106 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Früh et al. supplementary material
Früh et al. supplementary material 1

 Word (1.3 MB)
1.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed