Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T09:57:00.169Z Has data issue: false hasContentIssue false

Polymorphism of Ti3SiC2

Published online by Cambridge University Press:  31 January 2011

R. Yu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Q. Zhan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
L. L. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Y. C. Zhou
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H. Q. Ye
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Get access

Extract

We investigated the crystal structure of Ti3SiC2 by means of high-resolution electron microscopy (HREM). Two polymorphs, α– and β–Ti3SiC2, were identified. The amount of the α phase was larger than the β phase, indicating that the former has lower energy than the latter. We also found that the bright spots in HREM images of Ti3SiC2 do not necessarily correspond to the atomic columns; thus an intuitive interpretation of the image contrast in terms of the stacking sequences of the close-packed layers should be made cautiously

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barsoum, M.W., Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
2.Goto, T. and Hirai, T., Mater. Res. Bull. 22, 1195 (1987).CrossRefGoogle Scholar
3.Lis, J., Miyamoto, Y., Pampuch, R., and Tanihata, K., Mater. Lett. 22, 163 (1995).CrossRefGoogle Scholar
4.Arunajatesan, S. and Carim, A., J. Am. Ceram. Soc. 78, 667 (1995).CrossRefGoogle Scholar
5.Racault, C., Langlais, F., and Naslain, R., J. Mater. Sci. 29, 3384 (1994).CrossRefGoogle Scholar
6.Zhou, Y.C., Sun, Z.A., Chen, S.Q., and Zhang, Y., Mater. Res. Innovat. 2, 142 (1998).CrossRefGoogle Scholar
7.Ahuja, R., Eriksson, O., Wills, J.M., and Johansson, B., Appl. Phys. Lett. 76, 2226 (2000).CrossRefGoogle Scholar
8.Medvedeva, N.I., Novikov, D.L., Ivanovsky, A.L., Kuznetsov, M.V., and Freeman, A.J., Phys. Rev. B 58, 16042 (1998).CrossRefGoogle Scholar
9.Barsoum, M.W. and El-Raghy, T., J. Am. Ceram. Soc. 79, 1953 (1996).CrossRefGoogle Scholar
10.Barsourm, M.W., El-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, A., and Hubbard, C., J. Phys. Chem. Solids 60, 429 (1999).CrossRefGoogle Scholar
11.Barsourm, A.W., and El-Raghy, T., J. Mater. Synth. Process. 5, 197 (1997).Google Scholar
12.Barsourm, M.W., El-Raghy, T., and Ogbuji, L., J. Electrochem. Soc. 144, 2508 (1997).CrossRefGoogle Scholar
13.Gilbert, C.I., Bloyer, D.R., Barsourm, M.W., El-Raghy, T., Tormsia, A.P., and Ritchie, R.O., Scripta Mater. 42, 761 (2000).CrossRefGoogle Scholar
14.Yoo, H.I., Barsoum, M.W., and El-Raghy, T., Nature 407, 581 (2000).CrossRefGoogle Scholar
15.Jeitschko, W., and Nowomy, H., Monatsh. Chem. 98, 329 (1967).CrossRefGoogle Scholar
16.Farber, L., Levin, I., Barsourn, A.W., EI-Raghy, T., and Tzenov, T., J. Appl. Phys. 86, 2540 (1999).CrossRefGoogle Scholar
17.International Tables for Crystallography, Vol. A, 3rd ed., edited by Hahn, T. (Kluwer, Dordrecht, The Netherlands, 1992).Google Scholar
18.Spence, J.C.H., Experimental High Resolution Electron Microscopy (Clarendon Press, Oxford, United Kingdom, 1981).CrossRefGoogle Scholar