Skip to main content

Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan

  • Yomaira L. Uscátegui (a1), Said J. Arévalo-Alquichire (a1), José A. Gómez-Tejedor (a2), Ana Vallés-Lluch (a3), Luis E. Díaz (a4) and Manuel F. Valero (a5)...

Polyurethane-based bioadhesive was synthesized with polyols derived from castor oil (chemically modified and unmodified) and hexamethylene diisocyanate with chitosan addition as a bioactive filler. The objective was to evaluate the effect of type of polyols with the incorporation of low-concentrations of chitosan on the mechanical and biological properties of the polymer to obtain suitable materials in the design of biomaterials. The results showed that increasing physical crosslinking increased the mechanical and adhesive properties. An in vitro cytotoxic test of polyurethanes showed cellular viability. The biocompatibility of the polyurethanes favors the adhesion of L929 cells at 6, 24, and 48 h. The polyurethanes showed bacterial inhibition depending on the polyol and percentage of chitosan. The antibacterial effect of the polyurethanes for Escherichia coli decreased 60–90% after 24 h. The mechanical and adhesive properties together with biological response in this research suggested these polyurethanes as external application tissue bioadhesives.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Lakshmi Nair

Hide All
1. Ates B., Koytepe S., Karaaslan M.G., Balcioglu S., and Gulgen S.: Biodegradable non-aromatic adhesive polyurethanes based on disaccharides for medical applications. Int. J. Adhes. Adhes. 49, 90 (2014).
2. Bouten P.J.M., Zonjee M., Bender J., Yauw S.T.K., Van Goor H., Van Hest J.C.M., and Hoogenboom R.: The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39, 1375 (2014).
3. Patel A.K.: Chitosan: Emergence as potent candidate for green adhesive market. Biochem. Eng. J. 102, 74 (2015).
4. Guo J., Kim G.B., Shan D., Kim J.P., Hu J., Wang W., Hamad F.G., Qian G., Rizk E.B., and Yang J.: Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 112, 275 (2017).
5. Khanlari S., Tang J., Kirkwood K.M., and Dubé M.: Synthesis and properties of a poly(sodium acrylate) bioadhesive nanocomposite. Int. J. Polym. Mater. Polym. Biomater. 65, 881 (2016).
6. Marques D.S., Santos J.M.C., Ferreira P., Correia T.R., Correia I.J., Gil M.H., and Baptista C.M.S.G.: Photocurable bioadhesive based on lactic acid. Mater. Sci. Eng., C 58, 601 (2016).
7. Jeon O., Samorezov J.E., and Alsberg E.: Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomater. 10, 47 (2014).
8. Wheat J.C. and Wolf J.S.: Advances in bioadhesives, tissue sealants, and hemostatic agents. Urol. Clin. North Am. 36, 265 (2009).
9. Mehdizadeh M., Weng H., Gyawali D., Tang L., and Yang J.: Biomaterials injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33, 7972 (2012).
10. Guo J., Wang W., Hu J., Xie D., Gerhard E., Nisic M., Shan D., Qian G., Zheng S., and Yang J.: Biomaterials synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. Biomaterials 85, 204 (2016).
11. Seeni Meera K.M., Murali Sankar R., Paul J., Jaisankar S.N., and Mandal A.B.: The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys. Chem. Chem. Phys. 16, 9276 (2014).
12. Szycher M.: Szycher’s Handbook of Polyurethanes (CRC Press Inc, Boca Ratón, 2012); ch. 22.
13. Alves P., Ferreira P., and Gil M.H.: Biomedical Polyurethane-Based Materials. In Polyurethane: Properties, Structure and Applications, Cavaco L.I. and Melo J.A., eds. (Nova Science Publishers, New York, 2012), pp. 125.
14. Usman A., Zia K.M., Zuber M., Tabasum S., Rehman S., and Zia F.: Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 86, 630 (2016).
15. Kaur G., Mahajan M., and Bassi P.: Derivatized polysaccharides: Preparation, characterization, and application as bioadhesive polymer for drug delivery. Int. J. Polym. Mater. 62, 475 (2013).
16. Anirudhan T.S., Nair S.S., and Nair A.S.: Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr. Polym. 152, 687 (2016).
17. Liu Y.G., Zhou C.R., and Sun Y.A.: A biomimetic strategy for controllable degradation of chitosan scaffolds. J. Mater. Res. 27, 1859 (2012).
18. Maisonneuve L., Chollet G., Grau E., and Cramail H.: Vegetable oils: A source of polyols for polyurethane materials. Ol., Corps Gras, Lipides 23, D508 (2016).
19. Narute P. and Palanisamy A.: Study of the performance of polyurethane coatings derived from cottonseed oil polyol. J. Coat. Technol. Res. 13, 171 (2016).
20. Uscátegui Y., Arévalo F., Díaz L., Cobo M., and Valero M.: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).
21. Shaik A., Narayan R., and Raju K.V.S.N.: Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J. Coat. Technol. Res. 11, 397 (2014).
22. Valero M.F. and Gonzalez A.: Polyurethane adhesive system from castor oil modified by a transesterification reaction. J. Elastomers Plast. 44, 433 (2012).
23. Valero M.F. and Ortegón Y.: Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).
24. Valero M.F. and Díaz L.E.: Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quim. Nova 37, 1441 (2014).
25. Arevalo F., Uscategui Y.L., Diaz L.E., Cobo M., and Valero M.F.: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).
26. Cakić S.M., Ristić I.S., Cincović M.M., Nikolić N.C., Nikolić L., and Cvetinov M.J.: Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Prog. Org. Coat. 105, 111 (2017).
27. Conejero-García Á., Gimeno H.R., Sáez Y.M., Vilariño-Feltrer G., Ortuño-Lizarán I., and Vallés-Lluch A.: Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). Eur. Polym. J. 87, 406 (2017).
28. Zia K.M., Zuber M., Saif M.J., Jawaid M., Mahmood K., Shahid M., Anjum M.N., and Ahmad M.N.: Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int. J. Biol. Macromol. 62, 670 (2013).
29. Skrobot J., Zair L., Ostrowski M., and Fray M.: El biomaterials new injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 75, 182 (2016).
30. Riaz T., Ahmad A., Saleemi S., Adrees M., Jamshed F., Moqeet A., and Jamil T.: Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium(VI) removal. Carbohydr. Polym. 153, 582 (2016).
31. Pignatello R., Impallomeni G., Pistarà V., Cupri S., Graziano A.C.E., Cardile V., and Ballistreri A.: New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG(5000) polymers. Mater. Sci. Eng., C 46, 470 (2015).
32. Arnal-Pastor M., Comin-Cebrian S., Martinez-Ramos C., Monleon Pradas M., and Valles-Lluch A.: Hydrophilic surface modification of acrylate-based biomaterials. J. Biomater. Appl. 30, 1429 (2016).
33. Bakhshi H., Yeganeh H., Mehdipour-Ataei S., Shokrgozar M.A., Yari A., and Saeedi-Eslami S.N.: Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater. Sci. Eng., C 33, 153 (2013).
34. Hou Z., Zhang H., Qu W., Xu Z., and Han Z.: Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. Int. J. Polym. Mater. Polym. Biomater. 65, 947 (2016).
35. Gentile P., Bellucci D., Sola A., Mattu C., Cannillo V., and Ciardelli G.: Composite scaffolds for controlled drug release: Role of the polyurethane nanoparticles on the physical properties and cell behaviour. J. Mech. Behav. Biomed. Mater. 44, 53 (2015).
36. Pitchaimani A., Duong T., Nguyen T., and Koirala M.: Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicol. In Vitro 43, 29 (2017).
37. Kara F., Aksoy E.A., Yuksekdag Z., Hasirci N., and Aksoy S.: Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 112, 39 (2014).
38. Valero M.F., Pulido J.E., Ramírez Á., and Cheng Z.: Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol. Quim. Nova 31, 2076 (2008).
39. Cakić S.M., Ristić I.S., Cincović M.M., Stojiljković D.T., János C.J., Cvetinov M.J., and Stamenković J.V.: Glycolyzed poly(ethylene terephthalate) waste and castor oil-based polyols for waterborne polyurethane adhesives containing hexamethoxymethyl melamine. Prog. Org. Coat. 78, 357 (2015).
40. Kathalewar M., Sabnis A., and D’Mello D.: Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 57, 99 (2014).
41. Aung M.M., Yaakob Z., Kamarudin S., and Abdullah L.C.: Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind. Crops Prod. 60, 177 (2014).
42. Ferreira P., Pereira R., Coelho J.F.J., Silva A.F.M., and Gil M.H.: Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int. J. Biol. Macromol. 40, 144 (2007).
43. Bakhshi H., Yeganeh H., Yari A., and Nezhad S.K.: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: Synthesis, characterization, and biological properties. J. Mater. Sci. 49, 5365 (2014).
44. Corcuera M.A., Rueda L., Fernandez d’Arlas B., Arbelaiz A., Marieta C., Mondragon I., and Eceiza A.: Microstructure and properties of polyurethanes derived from castor oil. Polym. Degrad. Stab. 95, 2175 (2010).
45. Moussout H., Ahlafi H., Aazza M., and Bourakhouadar M.: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).
46. Gámiz-González M.A., Correia D.M., Lanceros-Mendez S., Sencadas V., Gómez Ribelles J.L., and Vidaurre A.: Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 167, 52 (2017).
47. Valero M.F., Pulido J.E., Ramírez Á., and Cheng Z.: Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros 19, 14 (2009).
48. Temenoff J.S. and Mikos A.G.: Biomaterials (Pearson/Prentice Hall, Upper Saddle River, NJ, 2008).
49. Depan D., Surya P.K.C.V., Girase B., and Misra R.D.K.: Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater. 7, 2163 (2011).
50. Sordel T., Kermarec-Marcel F., Garnier-Raveaud S., Glade N., Sauter-Starace F., Pudda C., Borella M., Plissonnier M., Chatelain F., Bruckert F., and Picollet-D’hahan N.: Influence of glass and polymer coatings on CHO cell morphology and adhesion. Biomaterials 28, 1572 (2007).
51. Pehlivanova V., Krasteva V., Seifert B., Lützow K., Tsoneva I., Becker T., Richau K., Lendlein A., and Tzoneva R.: The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins. J. Mater. Res. 28, 2180 (2013).
52. Zhu Y., Dong Z., Wejinya U.C., Jin S., and Ye K.: Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J. Biomech. 44, 2356 (2011).
53. Liu N., Chen X.G., Park H.J., Liu C.G., Liu C.S., Meng X.H., and Yu L.J.: Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli . Carbohydr. Polym. 64, 60 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 186 *
Loading metrics...

* Views captured on Cambridge Core between 25th September 2017 - 15th December 2017. This data will be updated every 24 hours.