Skip to main content Accessibility help
×
Home

Precipitation behavior of dispersoids and elevated-temperature properties in Al–Si–Mg foundry alloy with Mo addition

  • S. Chen (a1), K. Liu (a1) and X-G. Chen (a1)

Abstract

In the present work, Mo was added to an Al–Si–Mg foundry alloy to study its influence on the evolution of dispersoids during various heat treatments. The microhardness and the elevated-temperature tensile properties and creep resistance were measured to evaluate the contribution of dispersoids. Results showed that the addition of Mo greatly promoted the formation of α-dispersoids. During solution treatment, the formation of α-dispersoids started after 8 h at 500 °C. At high temperature (540 °C), the coarsening of dispersoids with increasing time became predominant. The optimum condition of dispersoids can be reached by 520 °C/12 h or 500 °C/4 h + 540 °C/2 h, leading to the highest differences in microhardness between the Mo-containing alloy and base alloy. The tensile strengths were improved at both room temperature and elevated temperatures, while the elongation at elevated temperature was greatly increased. The creep resistance at elevated temperature is further enhanced due to the Mo addition.

Copyright

Corresponding author

a)Address all correspondence to this author. kun.liu@uqac.ca

References

Hide All
1.Liu, G. and Müller, D.B.: Addressing sustainability in the aluminum industry: A critical review of life cycle assessments. J. Cleaner Prod. 35, 108117 (2012).10.1016/j.jclepro.2012.05.030
2.Norgate, T., Jahanshahi, S., and Rankin, W.: Assessing the environmental impact of metal production processes. J. Cleaner Prod. 15, 838848 (2007).10.1016/j.jclepro.2006.06.018
3.Team, T.: Trends in Steel Usage in the Automotive Industry (Forbes, 2015). Available at: https://www.forbes.com/sites/greatspeculations/2015/05/20/trends-in-steel-usage-in-the-automotive-industry/#4cd522114762.
4.Cole, G. and Sherman, A.: Light weight materials for automotive applications. Mater. Charact. 35, 39 (1995).10.1016/1044-5803(95)00063-1
5.Ye, H.: An overview of the development of Al–Si-alloy based material for engine applications. J. Mater. Eng. Perform. 12, 288297 (2003).
6.Garat, M. and Laslaz, G.: Improved aluminum alloys for common rail diesel cylinder heads. AFS Trans. 115, 8996 (2007).
7.Feikus, F.: Optimization of Al–Si cast alloys for cylinder head applications. AFS Trans. 106, 225231 (1998).
8.Murayama, M. and Hono, K.: Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 47, 15371548 (1999).10.1016/S1359-6454(99)00033-6
9.Li, Y., Brusethaug, S., and Olsen, A.: Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0. 5 alloy during aging treatment. Scr. Mater. 54, 99103 (2006).
10.Sha, G., Möller, H., Stumpf, W.E., Xia, J., Govender, G., and Ringer, S.: Solute nanostructures and their strengthening effects in Al–7Si–0.6 Mg alloy F357. Acta Mater. 60, 692701 (2012).10.1016/j.actamat.2011.10.029
11.Matsuda, K., Taniguchi, S., Kido, K., Uetani, Y., and Ikeno, S.: Effects of Cu and transition metals on the precipitation behaviors of metastable phases at 523 K in Al–Mg–Si alloys. Mater. Trans. 43, 27892795 (2002).10.2320/matertrans.43.2789
12.Wang, S., Matsuda, K., Kawabata, T., Yamazaki, T., and Ikeno, S.: Variation of age-hardening behavior of TM-addition Al–Mg–Si alloys. J. Alloys Compd. 509, 98769883 (2011).10.1016/j.jallcom.2011.07.067
13.Liu, K. and Chen, X-G.: Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 84, 340350 (2015).
14.Liu, K. and Chen, X-G.: Evolution of intermetallics, dispersoids, and elevated temperature properties at various Fe contents in Al–Mn–Mg 3004 alloys. Metall. Mater. Trans. B 47, 32913300 (2016).10.1007/s11663-015-0564-y
15.Muggerud, A.M.F., Mørtsell, E.A., Li, Y., and Holmestad, R.: Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng., A 567, 2128 (2013).
16.Ratke, L. and Voorhees, P.W.: Growth and Coarsening: Ostwald Ripening in Material Processing (Springer, Berlin, London, 2013).
17.Chen, R., Xu, Q., Jia, Z., and Liu, B.: Precipitation behavior and hardening effects of Si-containing dispersoids in Al–7Si–Mg alloy during solution treatment. Mater. Des. 90, 10591068 (2016).
18.Li, Y., Muggerud, A., Olsen, A., and Furu, T.: Precipitation of partially coherent α-Al (Mn, Fe) Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 60, 10041014 (2012).10.1016/j.actamat.2011.11.003
19.Lodgaard, L. and Ryum, N.: Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater. Sci. Eng., A 283, 144152 (2000).
20.Kim, H.Y., Park, T.Y., Han, S.W., and Lee, H.M.: Effects of Mn on the crystal structure of α-Al (Mn, Fe) Si particles in A356 alloys. J. Cryst. Growth 291, 207211 (2006).10.1016/j.jcrysgro.2006.02.006
21.Li, Y. and Arnberg, L.: Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 51, 34153428 (2003).
22.Nam, S.W. and Lee, D.H.: The effect of Mn on the mechanical behavior of Al alloys. Met. Mater. Int. 6, 13 (2000).
23.Park, D.S. and Nam, S.W.: Effects of manganese dispersoid on the mechanical properties in Al–Zn–Mg alloys. J. Mater. Sci. 30, 13131320 (1995).
24.Kim, K. and Nam, S.W.: Effects of Mn-dispersoids on the fatigue mechanism in an Al–Zn–Mg alloy. Mater. Sci. Eng., A 244, 257262 (1998).
25.Lee, D., Park, J., and Nam, S.W.: Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater. Sci. Technol. 15, 450455 (1999).
26.Farkoosh, A., Chen, X.G., and Pekguleryuz, M.: Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Mater. Sci. Eng., A 620, 181189 (2015).
27.Farkoosh, A., Chen, X.G., and Pekguleryuz, M.: Interaction between molybdenum and manganese to form effective dispersoids in an Al–Si–Cu–Mg alloy and their influence on creep resistance. Mater. Sci. Eng., A 627, 127138 (2015).10.1016/j.msea.2014.12.115
28.Dinnis, C.M., Taylor, J.A., and Dahle, A.K.: As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scr. Mater. 53, 955958 (2005).
29.Seifeddine, S., Johansson, S., and Svensson, I.L.: The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys. Mater. Sci. Eng., A 490, 385390 (2008).
30.Farkoosh, A. and Pekguleryuz, M.: Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 °C: Effects of Mg and the Q-precipitate phase. Mater. Sci. Eng., A 621, 277286 (2015).
31.Liu, K., Ma, H., and Chen, X-G.: Enhanced elevated-temperature properties via Mo addition in Al–Mn–Mg 3004 alloy. J. Alloys Compd. 694, 354365 (2017).
32.Li, Y. and Arnberg, L.: Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization. Mater. Sci. Eng., A 347, 130135 (2003).
33.Knipling, K.E., Dunand, D.C., and Seidman, D.N.: Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Z. Metallkd. 97, 246265 (2006).
34.Kaufman, J.G.: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures (ASM international, Materials Park, Ohio, 1999).
35.Lee, W-S. and Huang, Y-C.: Mechanical properties and dislocation substructure of 6061-T6 aluminum alloy impacted at cryogenic temperatures. Mater. Trans. 57, 344350 (2016).
36.Adachi, H., Miyajima, Y., Sato, M., and Tsuji, N.: Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using in situ X-ray diffraction technique. Mater. Trans. 56, 671678 (2015).
37.Sitdikov, O., Avtokratova, E., Sakai, T., and Tsuzaki, K.: Ultrafine-grain structure formation in an Al–Mg–Sc alloy during warm ECAP. Metall. Mater. Trans. A 44, 10871100 (2013).
38.Wang, W., Ma, Y., Yang, M., Jiang, P., Yuan, F., and Wu, X.: Strain rate effect on tensile behavior for a high specific strength steel: From quasi-static to intermediate strain rates. Metals 8, 11 (2017).
39.Fang, D., Duan, Q., Zhao, N., Li, J., Wu, S., and Zhang, Z.: Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing. Mater. Sci. Eng., A 459, 137144 (2007).
40.Warmuzek, M.: Aluminum–Silicon Casting Alloys: An Atlas of Microfractographs (ASM international, Materials Park, Ohio, 2004).
41.Pan, L., Liu, K., Breton, F., and Chen, X.G.: Effect of Fe on microstructure and properties of 8xxx aluminum conductor alloys. J. Mater. Eng. Perform. 25, 52015208 (2016).
42.Dieter, G.E. and Bacon, D.J.: Mechanical Metallurgy (McGraw-Hill, New York, 1986).

Keywords

Precipitation behavior of dispersoids and elevated-temperature properties in Al–Si–Mg foundry alloy with Mo addition

  • S. Chen (a1), K. Liu (a1) and X-G. Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed