Skip to main content

Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA

  • Itishree Ratha (a1), Akrity Anand (a1), Sabyasachi Chatterjee (a2), Biswanath Kundu (a1) and Gopinatha Suresh Kumar (a2)...

In this study, nano-hydroxyapatite (n-HAp) of average crystallite size ∼8.15 ± 4 nm of hexagonal geometry with size ranging between 14 and 50 nm was synthesized in laboratory at room temperature by using suitable sources of calcium and phosphate ions and using triethanolamine. Mesoporous bioactive glass (MBG) was synthesized by using cationic surfactant cetyl trimethyl ammonium bromide of the SiO2–CaO–P2O5 glass system. After calcination at 650 °C, MBG powders were having a zeta potential of −16.5 mV (pH ∼9.1), median particle size ∼75 nm, and specific surface area 473.2 m2/g. An aqueous suspension of DNA was used to disperse both n-HAp and MBG and further subjected for analysis including absorbance, circular dichroism spectroscopy, UV-melting, and isothermal titration calorimetry. Absorbance spectroscopy indicated that an equilibrium binding was obtained between both materials and DNA in solution phase. Due to the addition of the nanomaterial, molar ellipticity of DNA was changed revealing that the materials were interacted with DNA. From UV melting characterization, there is a shifting of the melting temperature of DNA in the presence of MBG and n-HAp, respectively, suggesting that the nanoparticles stabilized DNA helix to a considerable extent.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Bhowmik, R., Katti, K.S., and Katti, D.R.: Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 42, 8795 (2007).
2.Tortora, G.J.: Principles of Human Anatomy, 5th ed. (Harper and Row Publishers, New York, New York, 1989).
3.Ji, B. and Gao, H.: Elastic properties of nanocomposite structure of bone. Compos. Sci. Technol. 66, 1212 (2006).
4.Buehler, M.J.: Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. U.S.A. 103, 12285 (2006).
5.Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J.: Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23, 3919 (2002).
6.Kadler, K.E., Holmes, D.F., Trotter, J.A., and Chapman, J.A.: Collagen fibril formation. Biochem. J. 316, 1 (1996).
7.Regi, M.V., Ragel, C., and Salinas, A.J.: Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 1029 (2003).
8.Racquel, Z.L.: Calcium Phosphates in Oral Biology and Medicine (Karger Publishers, New York, New York, 1991).
9.Giannelis, E.P.: A new strategy for synthesizing polymer-ceramic nanocomposites. JOM 44, 28 (1992).
10.Liu, Q., De Wijn, J.R., and Van Blitterswijk, C.A.: Nano-apatite/polymer composites: Mechanical and physicochemical characteristics. Biomaterials 18, 1263 (1997).
11.Katti, K.S.: Biomaterials in total joint replacement. Colloids Surf., B 39, 133 (2004).
12.Baker, R., Rogers, K.D., Shepherd, N., and Stone, N.: New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034 (2010).
13.del Valle, L.J., Bertran, O., Chaves, G., Revilla-Lopez, G., Rivas, M., Casas, M.T., Casanovas, J., Turon, P., Puiggali, J., and Aleman, C.: DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B 2, 6953 (2014).
14.Zhu, S.H., Huang, B.Y., Zhou, K.C., Huang, S.P., Liu, F., Li, Y.M., Xue, Z.G., and Long, Z.G.: Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle Res. 6, 307 (2004).
15.Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M., and Elliott, J.C.: Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22, 2459 (2001).
16.Bertran, O., del Valle, L.J., Revilla-Lopez, G., Chaves, G., Cardus, L., Casas, M.T., Casanovas, J., Turon, P., Puiggali, J., and Aleman, C.: Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Trans. 43, 317 (2014).
17.Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).
18.Ohtsuki, C., Kokubo, T., and Yamamuro, T.: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids 143, 84 (1992).
19.Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).
20.Yan, X., Yu, C., Zhou, X., Tang, J., and Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem., Int. Ed. 43, 5980 (2004).
21.Kundu, B., Ghosh, D., Sinha, M.K., Sen, P.S., Balla, V.K., Das, N., and Basu, D.: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model. Ceram. Int. 39, 9557 (2013).
22.Yun, H-s., Kim, S-h., Lee, S., and Song, I-h.: Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater. Lett. 64, 1850 (2010).
23.Bernard, S.A., Balla, V.K., Davies, N.M., Bose, S., and Bandyopadhyay, A.: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7, 1902 (2011).
24.Chaires, J.B.: Equilibrium studies on the interaction of daunomycin with deoxypolynucleotides. Biochemistry 22, 4204 (1983).
25.Islam, M.M., Chowdhury, S.R., and Kumar, G.S.: Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J. Phys. Chem. B 113, 1210 (2009).
26.Hossain, M. and Kumar, G.S.: Thermodynamic profiles of the DNA binding of benzophenanthridines sanguinarine and ethidium: A comparative study with sequence specific polynucleotides. J. Chem. Therm. 42, 1273 (2010).
27.Sinha, R., Islam, M.M., Bhadra, K., Kumar, G.S., Banerjee, A., and Maiti, M.: The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC)·poly(rG): Spectroscopic and viscometric study. Bioorg. Med. Chem. 14, 800 (2006).
28.Bhowmik, D., Hossain, M., Buzzetti, F., Auria, R.D., Lombardi, P., and Kumar, G.S.: Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J. Phys. Chem. B 116, 2314 (2012).
29.Tkalcec, E., Sauer, M., Nonninger, R., and Schmidt, H.: Sol–gel-derived hydroxyapatite powders and coatings. J. Mater. Sci. 36, 5253 (2001).
30.Narasaraju, T.S.B. and Phebe, D.E.: Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 31, 1 (1996).
31.Suetsugu, Y., Shimoya, I., and Tanaka, J.: Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. J. Am. Ceram. Soc. 81, 746 (1998).
32.ElBatal, H.A., Azooz, M.A., Khalil, E.M.A., Monem, A.S., and Hamdy, Y.M.: Characterization of some bioglass-ceramics. Mater. Chem. Phys. 80, 599 (2003).
33.Mezahi, F-Z., Lucas-Girot, A., Oudadesse, H., and Harabi, A.: Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel. J. Non-Cryst. Solids 361, 111 (2013).
34.Garcia, A., Cicuendez, M., Izquierdo-Barba, I., Arcos, D., and Vallet-Regi, M.: Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem. Mater. 21, 5474 (2009).
35.Hanaor, D., Michelazzi, M., Leonelli, C., and Sorrell, C.C.: The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 32, 235 (2012).
36.Wu, C., Fan, W., and Chang, J.: Functional mesoporous bioactive glass nanospheres: Synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013).
37.Li, Y., Chen, X., Ning, C., Yuan, B., and Hu, Q.: Facile synthesis of mesoporous bioactive glasses with controlled shapes. Mater. Lett. 161, 605 (2015).
38.Chatterjee, S. and Kumar, G.S.: Targeting the heme proteins hemoglobin and myoglobin by janus green blue and study of the dye-protein association by spectroscopy and calorimetry. RSC Adv. 4, 42706 (2014).
39.Chatterjee, S. and Kumar, G.S.: Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. J. Photochem. Photobiol. B Biol. 159, 169 (2016).
40.Chatterjee, S. and Suresh Kumar, G.: Visualization of stepwise drug-micelle aggregate formation and correlation with spectroscopic and calorimetric results. J. Phys. Chem. B 120, 11751 (2016).
41.Roy, A., Chatterjee, S., Pramanik, S., Devi, P.S., and Kumar, G.S.: Selective detection of Escherichia coli DNA using fluorescent carbon spindles. Phys. Chem. Chem. Phys. 18, 12270 (2016).
42.Das, S., Pramanik, S., Chatterjee, S., Das, P.P., Devi, P.S., and Suresh Kumar, G.: Selective binding of genomic Escherichia coli DNA with ZnO leads to white light emission: A new aspect of nano-bio interaction and interface. ACS Appl. Mater. Interfaces 9, 644 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed