Skip to main content
×
×
Home

Preparation and characterization of monosized Cu–Sn spherical alloy particles by pulsated orifice ejection method

  • Ying-yan Hu (a1), Wen Yue (a2), Jian-qiang Li (a3), Wei Dong (a4), Can Li (a5), Bing-qian Ma (a6), Chao Liu (a7) and Jian-jun Han (a7)...
Abstract

Monosized spherical Cu–20% Sn (wt%) alloy particles with diameter ranging from 70.6 to 334.0 μm were prepared by the pulsated orifice ejection method (termed “POEM”). Fully dense without pores and bulk inclusions, the cross-sectional micrographs of the spherical alloy particles indicate an even distribution of Cu and Sn. These spherical Cu–Sn alloy particles exhibit a good spherical shape and a narrow size distribution, suggesting that the liquid Cu–Sn alloy can completely break the balance between the surface tension and the liquid static pressure in the crucible micropores and accurately control the volume of the droplets. Furthermore, the cooling rate of spherical Cu–20% Sn alloy particles is estimated by a Newton’s cooling model. The cooling rate of the Cu–20% Sn alloy particle decreases gradually with the particle diameter increasing. Smaller particles have higher cooling rates and when the particle diameter is less than 70 μm, the cooling rate of particles can reach more than 3.3 × 104 K/s. The secondary dendrite arm spacing has strong dependence on particle diameter which increases gradually with the increase of particle diameter. The results demonstrate that POEM is an effective route for fabrication of high-quality monosized Cu–20% Sn alloy particles.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: 313420145@qq.com
b)e-mail: jqli@ipe.ac.cn
References
Hide All
1.Lei, C., Huang, H., Cheng, Z., Tang, S., and Du, Y.: Mono-disperse spherical Cu–Zn powder fabricated via the low wettability of liquid/solid interface. Appl. Surf. Sci. 167, 357 (2015).
2.Lu, K. and Reynolds, W.T.: 3DP process for fine mesh structure printing. Powder Technol. 11, 187 (2008).
3.Hassan, I.B., Lafforgue, C., Ayadi, A., and Schmitz, P.: In situ 3D characterization of monodispersed spherical particle deposition on microsieve using confocal laser scanning microscopy. J. Membr. Sci. 283, 454 (2014).
4.Pu, W., He, X., Ren, J., Wan, C., and Jiang, C.: Electrodeposition of Sn–Cu alloy anodes for lithium batteries. Electrochim. Acta 4140, 50 (2005).
5.Lu, W., Wang, W., Jiang, H., Zuo, G., Pan, B., Xu, W., Chu, D., Hu, J., and Qi, J.: Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor. J. Nucl. Mater. 303, 494 (2017).
6.Dai, H., Wang, S., Zhu, G., and Zeng, P.: A new route for manufacturing monodispersed spherical copper particles for electronic applications. Mater. Mater. Lett. 173, 118 (2014).
7.Lei, C., Huang, H., Huang, Y., Cheng, Z., Tang, S., and Du, Y.: In situ de-wetting assisted fabrication of spherical Cu–Sn alloy powder via the reduction of mixture metallic oxides. Powder Technol. 356, 301 (2016).
8.Yakutik, I.M., Shevchenko, G.P., and Rakhmanov, S.K.: The formation of monodisperse spherical silver particles. Colloids Surf., A 175, 242 (2004).
9.Miura, A., Dong, W., Fukue, M., Yodoshi, N., Takagi, K., and Kawasaki, A.: Preparation of Fe-based monodisperse spherical particles with fully glassy phase. J. Alloys Compd. 5581, 509 (2011).
10.Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., and Srivastava, V.: Atomization process for metal powder. Mater. Sci. Eng., A 1, 383 (2004).
11.Rashad, M., Pan, F., and Asif, M.: Room temperature mechanical properties of Mg–Cu–Al alloys synthesized using powder metallurgy method. Mater. Sci. Eng., A 129, 644 (2015).
12.Masuda, S., Takagi, K., Dong, W., Yamanaka, K., and Kawasaki, A.: Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method. J. Cryst. Growth 2915, 310 (2008).
13.Cheng, Z., Lei, C., Huang, H., Tang, S., and Du, Y.: The formation of ultrafine spherical metal powders using a low wettability strategy of solid–liquid interface. Mater. Des. 324, 97 (2016).
14.Haq, I.U., Akhtar, K., and Malook, K.: Synthesis and characterization of monodispersed copper oxide and their precursor powder. Mater. Res. Bull. 121, 57 (2014).
15.Tongsri, R., Tosangthum, N., Yotkaew, T., Muthitamongkol, P., Sri-on, A., and Patakham, U.: Characterization of liquid-phase sintered materials produced from mechanically alloyed Cu + Sn powder compacts. Mater. Charact. 52, 113 (2016).
16.Novakovic, R., Lanata, T., Delsante, S., and Borzone, G.: Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments. Mater. Chem. Phys. 458, 137 (2012).
17.Lai, Q., Zhang, L., Chen, C., and Shang, J.K.: Tunable reactive wetting of Sn on microporous Cu layer. J. Mater. Sci. Technol. 379, 28 (2012).
18.Dong, R.F., Cui, Z-D., Zhu, S-L., Xu, X., and Yang, X-J.: Preparation, characterization and mechanical properties of Cu–Sn alloy/graphite composites. Metall. Mater. Trans. A 5194, 45A (2014).
19.Furtauer, S., Li, D., Cupid, D., and Flandorfer, H.: The Cu–Sn phase diagram, part I: New experimental results. Intermetallics 142, 34 (2013).
20.Saunders, N. and Miodownik, A.P.: Bulletin of Alloy Phase Diagrams (Springer Nature Press, New York, 1990); p. 278.
21.Yu, S-P., Wang, M-C., and Hong, M-H.: Formation of intermetallic compounds at eutectic Sn–Zn–Al solder/Cu interface. J. Mater. Res. 76, 16 (2001).
22.Zhang, Y-S., Zhang, W., Wang, X., and Huo, W-T.: Formation of core–shell network structural titanium–nitrogen alloys with different nitrogen contents. J. Mater. Sci. 7824, 52 (2017).
23.Battersby, S.E., Cochrane, R.F., and Mullis, A.M.: Microstructural evolution and growth velocity-undercooling relationships in the systems Cu, Cu–O, and Cu–Sn at high undercooling. J. Mater. Sci. 1365, 35 (2000).
24.Pang, J-F., Xu, Y., Li, X-G., and Chen, Y.: Influence of atomizing gas and cooling rate on solidification characterization of nickel-based superalloy powders. Rare Metal Mater. Eng. 423, 47 (2018).
25.Yan, N., Wang, W-L., and Wei, B.: Complex phase separation of ternary Co–Cu–Pb alloy under containerlessprocessing condition. J. Alloys Compd. 109, 558 (2013).
26.Pan, A-G., Wang, J-B., and Zhang, X-J.: Prediction of melting temperature and latent heat for low-melting metal PCMs. Rare Metal Mater. Eng. 874, 45 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed