Skip to main content
×
×
Home

Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer

  • Mojgan Najafi (a1), Saeid Soltanian (a2), Habibollah Danyali (a3), Rahman Hallaj (a4), Abdollah Salimi (a4), Seyed Mohammad Elahi (a5) and Peyman Servati (a6)...
Abstract
Abstract

High-density cobalt (Co) nanowires (NWs) were fabricated using porous anodized aluminum oxide as a template. Measurement results show a high magnetic performance for NWs with a coercivity of about 1750 Oe and strong magnetic anisotropy with an easy axis parallel to the NW direction. We have investigated the effect of alternating current (AC) electrodeposition frequency on the magnetic properties of NW samples. We show that understanding the effect of barrier layer is critical for controlling the rate of NW electrodeposition. A circuit model is proposed that accurately describes the role of the barrier and interfacial layers during deposition. Results obtained by simulation of the circuit show an excellent agreement with experimental results for different frequencies and voltages. It is shown that the amount of electrodeposited material can be estimated based on the difference between the anodic and cathodic half cycles in the electrodeposited current. Use of higher frequency leads to more symmetrical half cycles and smaller electrodeposited material.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: saeid@ece.ubc.ca; s.soltanian@gmail.com
References
Hide All
1.Nielsch K., Wehrspohn R.B., Barthel J., Kirschner J., Gosele U., Fischer S.F., and Kronmuller H.: Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 79, 1360 (2001).
2.Dubois S., Beuken J.M., Piraux L., Duvail J.L., Fert A., George J.M., and Maurice J.L.: Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 165, 30 (1997).
3.Blondel A., Meier J.P., Doudin B., and Ansermet J.P.: Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019 (1994).
4.Varghese O.K., Gong D., Dreschel W.R., Ong K.G., and Grimes C.A.: Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens. Actuators, B 94, 27 (2003).
5.Chakraborty S., Hara K., and Lai P.T.: New microhumidity field-effect transistor sensor in ppm(v) level. Rev. Sci. Instrum. 70, 1565 (1999).
6.Xu H., Qin D.H., Yang Z., and Li H.L.: Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 80, 524 (2003).
7.Matsumoto F., Nishio K., and Masuda H.: Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater. 16, 23 (2004).
8.Ono S., Saito M., Ishiguro M., and Asoh H.: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).
9.Chu S.Z., Inoue S., Wada K., Hishita S., and Kurashima K.: Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).
10.Lim J.R., Whitacre J.F., Fleurial J.P., Huang C.K., Ryan M.A., and Myung N.V.: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17, 1488 (2005).
11.Peng Y., Qin D.H., Zhou R.J., and Li H.L.: Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mater. Sci. Eng., B 77, 246 (2000).
12.Zheng M.J., Zhang L.D., Zhang X.Y., Zhang J., and Li G.H.: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298 (2001).
13.Choi J., Luo Y., Wehrspohn R.B., Hillebrand R., Schilling J., and Gosele U.: Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003).
14.Martin C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).
15.Shingubara S.: Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).
16.Hulteen J.C. and Martin C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).
17.Yoon H., Deshpande D.C., Ramachandran V., and Varadan V.K.: Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19, 025304 (2008).
18.Schonenberger C., vanderZande B.M.I., Fokkink L.G.J., Henny M., Schmid C., Kruger M., Bachtold A., Huber R., Birk H., and Staufer U.: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B 101, 5497 (1997).
19.Masuda H., Hasegwa F., and Ono S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).
20.Masuda H., Ohya M., Asoh H., Nakao M., Nohtomi M., and Tamamura T.: Photonic crystal using anodic porous alumina. Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).
21.Masuda H. and Fukuda K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).
22.Nicewarner-Pena S.R., Freeman R.G., Reiss B.D., He L., Pena D.J., Walton I.D., Cromer R., Keating C.D., and Natan M.J.: Submicrometer metallic barcodes. Science 294, 137 (2001).
23.Tian M.L., Wang J.U., Kurtz J., Mallouk T.E., and Chan M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).
24.Hebard F., Ajuria S.A., and Eick R.H.: Interface contribution to the capacitance of thin-film Al-Al2O3-Al trilayer structures. Appl. Phys. Lett. 51, 1349 (1987).
25.Brevnov D.A., Rama Rao G.V., López G.P., and Atanassov P.B.: Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochim. Acta 49, 2487 (2004).
26.Sharma G., Pishko M.V., and Grimes C.A.: Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 42, 4738 (2007).
27.Shimizu K., Kobayashi K., Thompson G.E., and Wood G.C.: Development of porous anodic films on aluminum. Philos. Mag. A 66, 643 (1992).
28.Jessensky O., Muller F., and Giosele U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).
29.Masuda H., Yamada H., Satoh M., Asoh H., Nakao M., and Tamamura T.: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).
30.O’Sullivan J.P. and Wood G.C.: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511 (1970).
31.Sellmyer D.J., Zheng M., and Skomski R.: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433 (2001).
32.Thompson G.E. and Wood G.C.: Anodic films on aluminum. in Corrosion: Aqueous Processes and Passive Films, Scully J.C., ed. (Academic Press, New York, NY, 1983).
33.Vrublevsky I., Parkoun V., Sokol V., and Schreckenbach J.: Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 236, 270 (2004).
34.Vrublevsky I., Parkoun V., Sokol V., Schreckenbach J., and Marx G.: The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 222, 215 (2004).
35.Parkhutik V.P. and Shershulsky V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (1992).
36.Yin A.J., Li J., Jian W., Bennett A.J., and Xu J.M.: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).
37.Almasi Kashi M., Ramazani A., and Khayyatian A.: The influence of the ac electrodeposition conditions on the magnetic properties and microstructure of Co nanowire arrays. J. Phys. D: Appl. Phys. 39, 4130 (2006).
38.Saedi A. and Ghorbani M.: Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).
39.Almasi Kashi M., Ramazani A., Ghaffari M., and Isfahani V.B.: The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using nonsymmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581 (2009).
40.Stoner E.C. and Wohlfarth E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599642 (1948).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.