Skip to main content
×
Home
    • Aa
    • Aa

Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer

  • Mojgan Najafi (a1), Saeid Soltanian (a2), Habibollah Danyali (a3), Rahman Hallaj (a4), Abdollah Salimi (a4), Seyed Mohammad Elahi (a5) and Peyman Servati (a6)...
Abstract
Abstract

High-density cobalt (Co) nanowires (NWs) were fabricated using porous anodized aluminum oxide as a template. Measurement results show a high magnetic performance for NWs with a coercivity of about 1750 Oe and strong magnetic anisotropy with an easy axis parallel to the NW direction. We have investigated the effect of alternating current (AC) electrodeposition frequency on the magnetic properties of NW samples. We show that understanding the effect of barrier layer is critical for controlling the rate of NW electrodeposition. A circuit model is proposed that accurately describes the role of the barrier and interfacial layers during deposition. Results obtained by simulation of the circuit show an excellent agreement with experimental results for different frequencies and voltages. It is shown that the amount of electrodeposited material can be estimated based on the difference between the anodic and cathodic half cycles in the electrodeposited current. Use of higher frequency leads to more symmetrical half cycles and smaller electrodeposited material.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: saeid@ece.ubc.ca; s.soltanian@gmail.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. K. Nielsch , R.B. Wehrspohn , J. Barthel , J. Kirschner , U. Gosele , S.F. Fischer , and H. Kronmuller : Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 79, 1360 (2001).

2. S. Dubois , J.M. Beuken , L. Piraux , J.L. Duvail , A. Fert , J.M. George , and J.L. Maurice : Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 165, 30 (1997).

3. A. Blondel , J.P. Meier , B. Doudin , and J.P. Ansermet : Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019 (1994).

4. O.K. Varghese , D. Gong , W.R. Dreschel , K.G. Ong , and C.A. Grimes : Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens. Actuators, B 94, 27 (2003).

5. S. Chakraborty , K. Hara , and P.T. Lai : New microhumidity field-effect transistor sensor in ppm(v) level. Rev. Sci. Instrum. 70, 1565 (1999).

6. H. Xu , D.H. Qin , Z. Yang , and H.L. Li : Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 80, 524 (2003).

7. F. Matsumoto , K. Nishio , and H. Masuda : Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater. 16, 23 (2004).

8. S. Ono , M. Saito , M. Ishiguro , and H. Asoh : Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).

9. S.Z. Chu , S. Inoue , K. Wada , S. Hishita , and K. Kurashima : Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).

10. J.R. Lim , J.F. Whitacre , J.P. Fleurial , C.K. Huang , M.A. Ryan , and N.V. Myung : Fabrication method for thermoelectric nanodevices. Adv. Mater. 17, 1488 (2005).

11. Y. Peng , D.H. Qin , R.J. Zhou , and H.L. Li : Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mater. Sci. Eng., B 77, 246 (2000).

12. M.J. Zheng , L.D. Zhang , X.Y. Zhang , J. Zhang , and G.H. Li : Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298 (2001).

13. J. Choi , Y. Luo , R.B. Wehrspohn , R. Hillebrand , J. Schilling , and U. Gosele : Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003).

14. C.R. Martin : Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).

15. S. Shingubara : Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).

16. J.C. Hulteen and C.R. Martin : A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

17. H. Yoon , D.C. Deshpande , V. Ramachandran , and V.K. Varadan : Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19, 025304 (2008).

18. C. Schonenberger , B.M.I. vanderZande , L.G.J. Fokkink , M. Henny , C. Schmid , M. Kruger , A. Bachtold , R. Huber , H. Birk , and U. Staufer : Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B 101, 5497 (1997).

19. H. Masuda , F. Hasegwa , and S. Ono : Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).

20. H. Masuda , M. Ohya , H. Asoh , M. Nakao , M. Nohtomi , and T. Tamamura : Photonic crystal using anodic porous alumina. Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).

21. H. Masuda and K. Fukuda : Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

22. S.R. Nicewarner-Pena , R.G. Freeman , B.D. Reiss , L. He , D.J. Pena , I.D. Walton , R. Cromer , C.D. Keating , and M.J. Natan : Submicrometer metallic barcodes. Science 294, 137 (2001).

23. M.L. Tian , J.U. Wang , J. Kurtz , T.E. Mallouk , and M.H.W. Chan : Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).

24. F. Hebard , S.A. Ajuria , and R.H. Eick : Interface contribution to the capacitance of thin-film Al-Al2O3-Al trilayer structures. Appl. Phys. Lett. 51, 1349 (1987).

25. D.A. Brevnov , G.V. Rama Rao , G.P. López , and P.B. Atanassov : Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochim. Acta 49, 2487 (2004).

26. G. Sharma , M.V. Pishko , and C.A. Grimes : Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 42, 4738 (2007).

27. K. Shimizu , K. Kobayashi , G.E. Thompson , and G.C. Wood : Development of porous anodic films on aluminum. Philos. Mag. A 66, 643 (1992).

28. O. Jessensky , F. Muller , and U. Giosele : Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).

29. H. Masuda , H. Yamada , M. Satoh , H. Asoh , M. Nakao , and T. Tamamura : Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).

30. J.P. O’Sullivan and G.C. Wood : The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511 (1970).

31. D.J. Sellmyer , M. Zheng , and R. Skomski : Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433 (2001).

32. G.E. Thompson and G.C. Wood : Anodic films on aluminum. in Corrosion: Aqueous Processes and Passive Films, J.C. Scully , ed. (Academic Press, New York, NY, 1983).

33. I. Vrublevsky , V. Parkoun , V. Sokol , and J. Schreckenbach : Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 236, 270 (2004).

34. I. Vrublevsky , V. Parkoun , V. Sokol , J. Schreckenbach , and G. Marx : The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 222, 215 (2004).

35. V.P. Parkhutik and V.I. Shershulsky : Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (1992).

36. A.J. Yin , J. Li , W. Jian , A.J. Bennett , and J.M. Xu : Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).

37. M. Almasi Kashi , A. Ramazani , and A. Khayyatian : The influence of the ac electrodeposition conditions on the magnetic properties and microstructure of Co nanowire arrays. J. Phys. D: Appl. Phys. 39, 4130 (2006).

38. A. Saedi and M. Ghorbani : Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).

39. M. Almasi Kashi , A. Ramazani , M. Ghaffari , and V.B. Isfahani : The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using nonsymmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581 (2009).

40. E.C. Stoner and E.P. Wohlfarth : A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599642 (1948).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th April 2017. This data will be updated every 24 hours.