Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T21:07:16.475Z Has data issue: false hasContentIssue false

Preparation of Colloidal Bismuth Particles in Polyols

Published online by Cambridge University Press:  01 June 2005

Corina Goia
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814
Egon Matijević
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814
Dan V. Goia
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814
Get access

Abstract

Nano- and micrometer size spherical bismuth particles were prepared by reducing bismuth salts in simple and mixed polyols at elevated temperatures. In general, the conversion to metallic bismuth was preceded by the formation, at intermediate temperatures, of bismuth-polyol compounds. By changing the type of bismuth salt, the composition of the polyol mixture, and the temperature of the process, these precursors were successfully converted into spherical bismuth particles. It was found that the reduction process proceeds only if the temperature of the polyol exceeds the values at which the intermediate bismuth-polyol are stable, which was determined to be around 220 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mei, Z. and Morris, J.W.: Characterization of eutectic tin-bismuth solder joints. J. Electron. Mater. 21, 599 (1992).CrossRefGoogle Scholar
2Tomlinson, W.J. and Collier, I.: The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder. J. Mater. Sci. 22, 1835 (1987).CrossRefGoogle Scholar
3Eickmans, J., Leenders, L., Lamotte, J., Dierksen, K. and Jacobsen, W.: Mastertool: A new dry phototool in the production of printed circuit boards. Circuit World 22, 26 (1996).CrossRefGoogle Scholar
4Gallo, C.F., Chandrasekhar, B.S. and Sutter, P.H.: Transport properties of bismuth single crystals. J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
5Dresselhaus, M.S., Zhang, Z., Sun, X., Ying, J., Heremans, J.P., Dresselhaus, G. and Chen, G. Prospects for bismuth nanowires as thermoelectrics, in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B., Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1990), p. 215.Google Scholar
6Hoffman, C.A., Meyer, J.R., Bartoli, F.J., Venere, A.D., Yi, X.J., Hou, C.L., Wang, C.A. and Ketterson, J.B.: Semimetal-to-semiconductor transition in bismuth thin films. Phys. Rev. B48, 11431 (1993).CrossRefGoogle Scholar
7Golding, T.D., Dura, J.A., Wang, H., Zborowsky, J.T., Vigilante, A., Chen, H.C., Miller, J.H. and Meyer, J.R.: Investigation of Sb/GaSb multilayer structures for potential application as an indirect narrow-bandgap material. Semicond. Sci. Technol. 8, S117 (1993).CrossRefGoogle Scholar
8Mangez, J.H., Issi, J-P. and Heremans, J.: Transport properties of bismuth in quantizing magnetic fields. Phys. Rev. B 14, 4381 (1976).CrossRefGoogle Scholar
9Yang, F.Y., Liu, K., Hong, K., Reich, D.H., Searson, P.C. and Chein, C.L.: Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335 (1999).CrossRefGoogle ScholarPubMed
10Wang, F.Y., Liu, K., Chien, C.L. and Searson, P.C.: Large magnetoresistance and finite size effects in electrodeposited single crystal bismuth thin films. Phys. Rev. Lett. 82, 3328 (1999).Google Scholar
11Foos, E.E., Stroud, R.M., Berry, A.D., Snow, A.W. and Armistead, J.P.: Synthesis of nanocrystalline bismuth in reverse micelles. J. Am. Chem. Soc. 122, 7114 (2000).CrossRefGoogle Scholar
12Fang, J., Stokes, K.L., Wiemann, J.A., Zhou, W.L., Dai, J., Chen, F. and O’Connor, C.J.: Microemulsion-processed bismuth nanoparticles. Mater. Sci. Eng. B83, 254 (2001).CrossRefGoogle Scholar
13Jiang, S., Huang, Y-H., Luo, F. and Yan, C-H.: Synthesis of bismuth with various morphologies by electrodeposition. Inorg. Chem. Comm. 6, 781 (2003).CrossRefGoogle Scholar
14Wegner, K., Walker, B., Tsantilis, S. and Pratsinis, S.E.: Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci. 57, 1753 (2002).CrossRefGoogle Scholar
15Granqvist, C.G. and Buhrman, R.A.: Ultrafine metal particles. J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
16Zhao, Y., Zhang, Z. and Dang, H.: A simple way to prepare bismuth nanoparticles. Mater. Lett. 58, 790 (2004).CrossRefGoogle Scholar
17Fiévet, F. Polyol process, in Fine Particles. Synthesis, Characterization and Mechanisms of Growth, edited by Sugimoto, T. (Marcel Dekker, New York, NY, 2000), pp. 460496.Google Scholar
18Fiévet, F., Lagier, J.P. and Figlarz, M.: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14(12), 29 (1989).CrossRefGoogle Scholar
19Fiévet, F., Largier, J.P., Blin, B., Beaudoin, B. and Figlarz, M.: Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32/33, 198 (1989).CrossRefGoogle Scholar
20Ducamp-Seanguesa, C., Herrera-Urbina, R. and Figlarz, M.: Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J. Solid State Chem. 100, 272 (1992).CrossRefGoogle Scholar
21Kurihara, L.K., Chow, G.M. and Schoen, P.E.: Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 6, 607 (1995).CrossRefGoogle Scholar
22Jungk, H-O. and Feldmann, C.: Polyol mediated synthesis of sub-micrometer Bi2O3 particles. J. Mater. Sci. 36, 297 (2001).CrossRefGoogle Scholar
23Wang, Y. and Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4, 2047 (2004).CrossRefGoogle Scholar
24Matsumura, T. Shono Y., Hashimoto, T., Hibino, K., Hamaguchi, H. and Aoki, T.: Electroorganic chemistry. XXII. Novel anodic cleavage of glycols to carbonyl compounds. J. Am. Chem. Soc. 97, 2546 (1975).Google Scholar
25Goia, D.V., Crnjak-Orel, Z. and Matijevic, E.: Conversion of uniform colloidal Cu2O spheres to copper in polyols. J. Mater. Res. 18, 4 (2003).Google Scholar