Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T19:33:29.310Z Has data issue: false hasContentIssue false

Process optimization for the fabrication of Tl2Ba2Ca2Cu3O10 thin films

Published online by Cambridge University Press:  31 January 2011

W. L. Holstein
Affiliation:
DuPont Central Research and Development, Experimental Station, P.O. Box 80356, Wilmington, Delaware 19880–0356
L. A. Parisi
Affiliation:
DuPont Central Research and Development, Experimental Station, P.O. Box 80356, Wilmington, Delaware 19880–0356
Get access

Abstract

A process has been developed for the fabrication of nearly single phase superconducting Tl2Ba2Ca2Cu3O10 thin films on (100) LaAlO3 substrates with a superconducting transition temperature Tc of 120 K and low microwave surface resistance at temperatures up to 110 K. Amorphous BaCaCuO precursor films were first deposited by rf magnetron sputtering and then thallinated at elevated temperatures. The double TlO layer phases (Tl2Ba2Ca2Cu3O10 + Tl2Ba2CaCu2O8) formed preferentially over the single TlO layer phases (TlBa2Ca2Cu3O9 + TlBa2CaCu2O7) at high Tl2O partial pressures. Thin films containing Tl2Ba2Ca2Cu3O10 and a small amount of CuO were prepared from Cu-rich precursor films (Cu/Ba > 1.7), while lower Cu content led to the formation of Tl2Ba2CaCu2O8 as a secondary phase. Tl2Ba2Ca2Cu3O10 film epitaxy was enhanced by carrying out the thallination in reduced oxygen partial pressures of 0.01–0.05 atm. Following the thallination step, the Tl2Ba2Ca2Cu3O10 thin films had a superconducting transition temperature Tc of only 106 ± 4 K. An additional 62 h anneal at 800 °C or an 8 h anneal at 850 °C in a Tl2O/O2 atmosphere increased the Tc to 120 K. The increase in Tc was accompanied by a decrease in the c-axis lattice constant, an enhancement in the long-range order in the c-direction, and the formation of a small amount of Tl2Ba2CaCu2O8 as a secondary phase. Minimization of surface resistance at high temperature (95–110 K) requires that the fraction of Tl2Ba2CaCu2O8 secondary phase in the films be kept low. Process routes are also described for the formation of nearly single phase TlBa2Ca2Cu3O9 and TlBa2CaCu2O7 thin films and the formation of a new ordered intergrowth phase, Tl4Ba4Ca3Cu5O18, which consists of alternating Tl2Ba2CaCu2O8 and Tl2Ba2Ca2Cu3O10 layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 138 (1988).CrossRefGoogle Scholar
2.Subramanian, M. A., Torardi, C. C., Gopalkrishnan, J., Gai, P. L., Calabrese, J. C., Askew, T. R., Flippen, R. B., and Sleight, A. W., Science 242, 249 (1988).CrossRefGoogle Scholar
3.Torardi, C. C., in Chemistry of Superconducting Materials, edited by Vanderah, T. A. (Noyes, Park City, NJ, 1992), pp. 485544.Google Scholar
4.Raveau, B., Michel, C., Hervieau, M., and Groult, D., Crystal Chemistry of High-Tc Superconducting Copper Oxides (Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
5.Tsai, M-J., Wu, S. F., Huang, Y. T., and Lu, S. W., Physica C 198, 125 (1992).CrossRefGoogle Scholar
6.Kaneko, T., Hamada, K., Adachi, S., and Yamauchi, H., Physica C 197, 385 (1992).CrossRefGoogle Scholar
7.Liu, R. S., Tallon, J.L., and Edwards, P. P., Physica C 182, 119 (1991).CrossRefGoogle Scholar
8.Liu, R. S., Hervieu, M., Michel, C., Raveau, B., and Edwards, P. P., J. Solid State Chem. 100, 186 (1992).CrossRefGoogle Scholar
9.Subramanian, M. A., Parise, J. B., Calabrese, J. C., Torardi, C. C., Gopalkrishnan, J., and Sleight, A. W., J. Solid State Chem. 77, 192 (1988).CrossRefGoogle Scholar
10.Liu, R. S., Hu, S. F., Jefferson, D. A., and Edwards, P. P., Physica C 198, 318 (1992).CrossRefGoogle Scholar
11.Kim, D. H., Gray, K. E., Kampwirth, R. T., Smith, J. C., Richeson, D. S., Marks, T. J., Kang, J. H., Talvacchio, J., and Eddy, M., Physica C 177, 431 (1991).CrossRefGoogle Scholar
12.Subramanian, M. A., Calabrese, J. C., Torardi, C. C., Gopalkrish-nan, J., Askew, T. R., Flippen, R. B., Morissey, K. J., Chowdhry, U., and Sleight, A. W., Nature (London) 332, 420 (1988).CrossRefGoogle Scholar
13.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., Appl. Phys. Lett. 60, 2014 (1992).CrossRefGoogle Scholar
14.Holstein, W. L., Parisi, L. A., Shen, Z-Y., Wilker, C., Brenner, M. S., and Martens, J. S., J. Supercond. 6, 191 (1993).CrossRefGoogle Scholar
15.Holstein, W. L., Wilker, C., Laubacher, D. B., Face, D. W., Pang, P., Warrington, M. S., Carter, C. F., and Parisi, L. A., J. Appl. Phys. 74, 1426 (1993).CrossRefGoogle Scholar
16.Wilker, C., Shen, Z-Y., Face, D.W., Holstein, W.L., Matthews, A.L., and Laubacher, D.B., IEEE Trans. Microwave Theory Tech. 39, 1462 (1991).CrossRefGoogle Scholar
17.Laubacher, D. B., Shen, Z-Y., Pang, P. S., Wilker, C., and Holstein, W. L., Advances in Superconductivity IV, edited by Hayakawa, H. and Koshizuka, N. (Springer-Verlag, Tokyo, 1992), pp. 953956.CrossRefGoogle Scholar
18.Dorothy, R. G., Face, D. W., Holstein, W. L., Wilker, C., Shen, Z-Y., and Laubacher, D. B., in Advances in Superconductivity III, edited by Kajimura, K. and Hayakawa, H., (Springer-Verlag, Tokyo, 1991), pp. 11751178.CrossRefGoogle Scholar
19.Chrzanowski, J., Burany, X. M., Curzon, A. E., Irwin, J. C., Heinrich, B., Fortier, N., and Cragg, A., Physica C 207, 25 (1993).CrossRefGoogle Scholar
20.Adachi, S., Adachi, H., Ichikawa, Y., Setsune, K., and Wasa, K., Jpn. J. Appl. Phys. 30, L1110 (1991).CrossRefGoogle Scholar
21.Hong, M., Liou, S. H., Bacon, D. D., Grader, G. S., Kwo, J., Krotan, A. R., and Davidson, B. A., Appl. Phys. Lett. 53, 2102 (1988).CrossRefGoogle Scholar
22.Chen, C. H., Hong, M., Werder, D. J., Kwo, J., Liou, S. H., and Bacon, D. D., Appl. Phys. Lett. 54, 1579 (1989).CrossRefGoogle Scholar
23.Lin, R. J. and Wu, P. T., Jpn. J. Appl. Phys. 28, L85 (1989).CrossRefGoogle Scholar
24.Chu, M. L., Chang, H. L., Wang, C., Juang, J. Y., Uen, T. M., and Gou, Y. S., Appl. Phys. Lett. 59, 1123 (1991).CrossRefGoogle Scholar
25.Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Beyers, R., Salem, J., Savoy, R., and Vazquez, J., Appl. Phys. Lett. 60, 772 (1992).CrossRefGoogle Scholar
26.Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullock, D. C., and Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).CrossRefGoogle Scholar
27.Lee, W. Y., Vazquez, J., Huang, T. C., and Savoy, R., J. Appl. Phys. 70, 3952 (1991).CrossRefGoogle Scholar
28.Wu, C. Y., Foong, F., Liou, S. H., Ho, J. C., IEEE Trans. Appl. Supercond. 3, 1205 (1993).CrossRefGoogle Scholar
29.Nabatame, T., Saito, Y., Aihara, K., Kamo, T., and Matsuda, S-P., Jpn. J. Appl. Phys. 29, L1813 (1990).CrossRefGoogle Scholar
30.Johs, B., Thompson, D., Ianno, N. J., Woolam, J. A., Liou, S. H., Hermann, A. M., Sheng, Z. Z., Kiehl, W., Shams, A., Fei, X., Sheng, L., and Liu, Y. H., Appl. Phys. Lett. 54, 1810 (1989).CrossRefGoogle Scholar
31.Lai, H. C., Vernon-Parry, K. D., Chern, J. D., and Grovenor, C. R. M., Supercond. Sci. Technol. 4, 306 (1991).CrossRefGoogle Scholar
32.Kwak, J. F., Ginley, D. S., Venturini, E. L., Morosin, B., Baugh-man, R. J., Barbour, J. C., and Eatough, M. O., in Studies of High Temperature Superconductors, edited by Narlikar, A. (Nova Science Publishers, New York, 1991), Vol. 7, pp. 4573.Google Scholar
33.Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturini, E. L., Mitchell, M. A. and Morosin, B., Physica C 156, 592 (1988).CrossRefGoogle Scholar
34.Sugise, R., Hirabayahsi, M., Terada, N., Jo, M., Kawashima, F., and Ihara, H., Jpn. J. Appl. Phys. 27, L2310 (1988).CrossRefGoogle Scholar
35.Tang, Y. Q., Sheng, Z. Z., Chen, Z. Y., Li, Y. F., and Pederson, D. O., Supercond. Sci. Technol. 5, 538 (1992).CrossRefGoogle Scholar
36.DeLuca, J. A., Garbauskas, M. F., Bolon, R. B., McMullen, J. G., Balz, W. E., and Karas, P. L., J. Mater. Res. 6, 1415 (1991).CrossRefGoogle Scholar
37.Naziripour, A., Cong, C., Drexler, J. W., Swartzlander, A. B., Nelson, A. J., and Hermann, A. M., J. Appl. Phys. 70, 6495 (1991).CrossRefGoogle Scholar
38.Holstein, W. L., Appl. Supercond. 2, 345 (1994).CrossRefGoogle Scholar
39.Ginley, D. S., Martens, J. S., Venturini, E. L., Tigges, C. P., Ashby, C., and Volk, S., IEEE Trans. Appl. Supercond. 3, 1201 (1993).CrossRefGoogle Scholar
40.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., IEEE Trans. Appl. Supercond. 3, 1197 (1993).CrossRefGoogle Scholar
41.Aselage, T. L., Venturini, E. L., and van Deusen, S. B., J. Appl. Phys. 75, 1023 (1994).CrossRefGoogle Scholar
42.Aselage, T. L., Venturini, E. L., van Deusen, S. B., Headley, T. J., Eatough, M. O., and Voigt, J. A., Physica C 203, 25 (1992).CrossRefGoogle Scholar
43.Aselage, T. L., Voigt, J. A., and Keefer, K. D., J. Am. Ceram. Soc. 73, 3345 (1990).CrossRefGoogle Scholar
44.Holstein, W. L., J. Phys. Chem. 97, 4224 (1993).CrossRefGoogle Scholar
45.Holstein, W. L., J. Chem. Thermodynamics 25, 1287 (1993).CrossRefGoogle Scholar
46.Doss, J. D., Cooke, D. W., McCabe, C.W., and Maez, M.E., Rev. Sci. Instrum. 59, 659 (1988).CrossRefGoogle Scholar
47.Wilker, C., Shen, Z-Y., Nguyen, V. X., and Brenner, M. S., IEEE Trans. Appl. Supercond. 3, 1457 (1993).CrossRefGoogle Scholar
48.Face, D. W. and Nestlerode, J. P., Appl. Phys. Lett. 61, 1838 (1992).CrossRefGoogle Scholar
49.Face, D. W. and Nestlerode, J. P., IEEE Trans. Appl. Supercond. 3, 1516 (1993).CrossRefGoogle Scholar
50.Meyers, K., Face, D. W., Kountz, D. J., and Nestlerode, J. P., Appl. Phys. Lett. 65, 490 (1994).CrossRefGoogle Scholar
51.Ahn, B. T., Lee, W. Y., and Beyers, R., Appl. Phys. Lett. 60, 2150 (1992).CrossRefGoogle Scholar
52.Parkin, S. S. P., Lee, V. Y., Nazzai, A. I., Savoy, R., and Beyers, R., Phys. Rev. Lett. 61, 750 (1988).CrossRefGoogle Scholar
53.Kikuchi, M., Kajitani, T., Suzuki, T., Nakajima, S., Hiraga, K., Kobayashi, N., Iwasaki, H., and Syono, Y., Jpn. J. Appl. Phys. 28, L382 (1989).CrossRefGoogle Scholar
54.Liu, R. S., Johnson, D. J., Edwards, P. P., and Campbell, A. M., Solid State Commun. 79, 43 (1991).CrossRefGoogle Scholar
55.Liu, R. S. and Edwards, P. P., Physica C 179, 353 (1991).CrossRefGoogle Scholar
56.Morgan, P. E. D., Doi, T., Housley, R. M., and Porter, J. R., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, 1993), pp. 391394.CrossRefGoogle Scholar
57.Morgan, P. E. D., Housely, R. M., and Ratto, J. J., Physica C 176, 279 (1991).CrossRefGoogle Scholar
58.Morgan, P. E. D., Piche, J., and Housely, R. M., Physica C 191, 179 (1992).CrossRefGoogle Scholar
59.Morosin, B., Venturini, E. L., and Ginley, D. S., Physica C 175, 241 (1991).CrossRefGoogle Scholar
60.Ogborne, D. M., Weller, M. T., and Lanchester, P. C., Physica C 200, 167 (1992).CrossRefGoogle Scholar
61.Kaneko, T., Yamauchi, H., and Tanaka, S., Physica C 178, 377 (1991).CrossRefGoogle Scholar
62.Holstein, W. L. and Parisi, L. A., in Layered Superconductors: Fabrication, Properties, and Applications, edited by Shaw, D. T., Tsui, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), pp. 341346.Google Scholar
63.Holstein, W. L., Parisi, L.A., Fincher, C.R., and Gai, P.L., Physica C 212, 110 (1993).CrossRefGoogle Scholar
64.Holstein, W.L., J. Appl. Phys. 74, 4963 (1993).CrossRefGoogle Scholar
65.Presland, M. R., Tallon, J. L., Buckly, R. G., Liu, R. S., and Flower, N. E., Physica C 176, 95 (1991).CrossRefGoogle Scholar
66.Shimakawa, Y., Kubo, Y., Manako, T., and Igarashi, H., Phys. Rev. B 40, 11400 (1989).CrossRefGoogle Scholar
67.Kaneko, T., Hamada, K., Adachi, S., Yamauchi, H., and Tanaki, S., in Advances in Superconductivity IV, edited by Hayakawa, H. and Koshizuka, N. (Springer-Verlag, Tokyo, 1992), pp. 179182.CrossRefGoogle Scholar
68.Martens, J. S., in Thallium-Based High Temperature Superconductors, edited by Hermann, A.M. and Yakhmi, J.V. (Marcel Dekker, New York, 1994), pp. 289312.Google Scholar
69.Holstein, W.L., Wilker, C., Pang, P. S. W., Laubacher, D.B., McKenna, S.P., and Face, D.W., IEEE Trans. Appl. Supercond. 5, 1693 (1995).CrossRefGoogle Scholar