Skip to main content Accessibility help

Processing, microstructure and mechanical properties of Al-based metal matrix composites reinforced with mechanically alloyed particles

  • A.K. Chaubey (a1), S. Scudino (a2), N.K. Mukhopadhyay (a3) and J. Eckert (a4)


Al-based composites reinforced with Mg–7.4%Al mechanically alloyed particles have been synthesized by hot pressing followed by hot extrusion. Microstructural characterization of the bulk samples reveals the phase transformation of the reinforced particles (Mg(Al)ss + γ-Al12Mg17) to the stable intermetallic β-Al3Mg2 phase which occurs during consolidation. The phase transformation leads to the increase of effective volume faction of the reinforcement along with strong interfacial bonding, which causes a significant increase of the strength of the composites retaining appreciable plastic deformation. The strengthening can be attributed to the reduction of ligament size and to the interface strengthening due to better interface bonding (load-transfer) between the Al-matrix and the reinforcing particles.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Chaubey, A.K., Scudino, S., Mukhopadhyay, N.K., Samadi Khoshkhoo, M., Mishra, B.K., and Eckert, J.: Effect of particle dispersion on the mechanical behavior of Al-based metal matrix composites reinforced with nanocrystalline Al–Ca intermetallics. J. Alloys Compd. 536, S134 (2012).
2. Scudino, S., Liu, G., Sakaliyska, M., Surreddi, K.B., and Eckert, J.: Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Mater. 57, 4529 (2009).
3. Kang, Y.C. and Chan, S.L.: Tensile properties of nanometric Al2O3 particulate reinforced alumina matrix composite. Mater. Chem. Phys. 85, 438 (2004).
4. Hsu, C.J., Chang, C.Y., Kao, P.W., Ho, N.J., and Chang, C.P.: Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54, 5241 (2006).
5. Tang, F., Han, B.Q., Hagiwara, M., and Schoenung, J.M.: Tensile deformation and fracture in a bulk nanostructured Al-5083/SiCp composite at elevated temperatures. Adv. Eng. Mater. 9, 286 (2007).
6. Zhong, X.L., Wong, W.L.E., and Gupta, M.: Enaching strength and duclity of magnesium by integrating in with aluminum nanoparticle. Acta Mater. 55, 6338 (2007).
7. Ali, F., Scudino, S., Liu, G., Srivastava, V.C., Mukhopadhyay, N.K., Surreddi, K.B., Sakaliyska, M., Samadi Khoshkhoo, M., Uhlenwinkl, V., and Eckert, J.: Mechanical behaviour of quasicrystalline-reinforced Al-based metal matrix composites. J. Alloys Compd. 536, 130 (2012).
8. Basariya, M.R., Srivastava, V.C., and Mukhopadhyay, N.K.: Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater. Des. 64, 542 (2014).
9. Basariya, M.R., Srivastava, V.C., and Mukhopadhyay, N.K.: Effect of milling time on structural evolution and mechanical properties of garnet reinforced EN AW6082 composites. Metall. Mater. Trans. A 36, 1360 (2015).
10. Liua, Y.Q., Conga, H.T., Wanga, W., Sun, C.H., and Cheng, H.M.: AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties. Mater. Sci. Eng., A 505, 151 (2009).
11. Wang, H.Y., Jiang, Q.C., Wang, Y., Ma, B.X., and Zhao, F.: Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett. 58, 3509 (2004).
12. Kanga, Y.C. and Lap-Ip Chan, S.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85, 438 (2004).
13. Schurack, F., Eckert, J., and Schultz, L.: Synthesis and mechanical properties of high strength composites. Phil. Mag. 83, 1287 (2003).
14. EI Kabir, T., Joulain, A., Gauthier, V., Dubois, S., Bonneville, J., and Bertheau, D.: Hot isostatic pressing synthesis and mechanical properties of Al/Al–Cu–Fe composite materials. J. Mater. Res. 23, 904 (2008).
15. Inoue, A.: Amorphous: Nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).
16. Inoue, A. and Kimura, H.: Fabrications and mechanical properties of bulk nanoquasicrystalline alloys in Al-based system. J. Light Met. 1, 31 (2001).
17. Chaira, D., Sangal, S., and Mishra, B.K.: Synthesis of aluminium–cementite metal matrix composite by mechanical alloying. Mater. Manuf. Processes 22, 492 (2007).
18. Prashanth, K.G., Kumar, S., Scudino, S., Murty, B.S., and Eckert, J.: Fabrication and response of Al70Y16Ni10Co4 glass reinforced metal matrix composites. Mater. Manuf. Processes 26, 1242 (2011).
19. Moazami-Goudarzi, M.D. and Akhlaghi, F.: Effect of SiC nanoparticles content and Mg addition on the characteristics of Al/SiC composite powders produced via in situ powder metallurgy (IPM) method. Part. Sci. Technol. 31, 234 (2014).
20. Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223315 (1989).
21. Witkin, D.B. and Lavernia, E.J.. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 160 (2006).
22. Liua, Y.Q., Cong, H.T., Wang, W., Sun, C.H., and Cheng, H.M.: AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties. Mater. Sci. Eng., A 505, 151 (2009).
23. Kainer, K.U.: Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering (J. WILEY-VCH, Weinheim, 2006).
24. Tan, M.J. and Zhang, X.: Powder metal-matrix composites: Selection and processing. Mater. Sci. Eng., A 244, 80 (1998).
25. Ozdemir, I., Ahrensb, S., Mücklich, S., and Wielageb, B.: Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling. J. Mater. Process. Technol. 205, 111 (2008).
26. Lu, L., Lai, M.O., and Zhang, S.: Preparation of Al-based composite using mechanical alloying. Key Eng. Mater. 111–124, 104 (1995).
27. Chaubey, A.K., Scudino, S., Samadi Khoshkhoo, M., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., and Eckert, J.: Synthesis and characterization of nanocrystalline Mg93.3Al6.7 powders produced by mechanical alloying. Metals 3, 58 (2013).
28. ASTM E9-89a: Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature (ASTM International, West Conshohocken, 2000).
29. Bauer, E., Kaldarar, H., Lackner, R., Michor, H., Steiner, W., Scheidt, E-W., Galatanu, A., Marabelli, F., Wazumi, T., Kumagai, K., and Feuerbacher, M.: Superconductivity in the complex metallic alloy β-Al3Mg2 . Phys. Rev. B: Condens. Matter Mater. Phys. 76, 1 (2007).
30. Saha, R., Morris, E., and Chawla, N.: Hybrid and conventional particle reinforced metal matrix composites by squeeze infiltration casting. J. Mater. Sci. Lett. 21, 337 (2002).
31. StJohn, D.H., Dahle, A.K., Abbott, T., Nave, M.D., and Qian, M.: Solidification of Cast Magnesium Alloys (Magnesium Tech, Warrendale, 2003); pp. 95100.
32. Biner, S.B.: The role of interfaces and matrix void nucleation mechanism on the ductile fracture process of discontinuous fibre-reinforced composites. J. Mater. Sci. 29 2893 (1994).
33. Mcdanels, D.L.: Analysis of stress-strain, fracture and ductility behaviour of aluminum matrix composite containing discontinuous silicon carbide reinforcement. Metall. Trans. A 16, 1105 (1985).
34. Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).
35. Handwerker, C.A., Cahn, J.W., and Manning, J.R.: Thermodynamics and kinetics of reactions at interfaces in composites. Mater. Sci. Eng., A 126, 173 (1990).
36. Mingyi, Z., Kun, W., Hancen, L., Kamado, S., and Kojima, Y.: Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites. Mater. Lett. 57, 558 (2002).
37. Atabaki, M.M. and Idris, J.: Low-temperature partial transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite to AZ91D using Al-based inter layer. Mater. Des. 34, 832 (2011).
38. Zhang, X.P., Tan, M.J., Yang, T.H., Xu, X.J., and Wang, J.T.: Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull. Mater. Sci. 34, 805 (2011).
39. ASTM Annual Book: Standard Terminology Relating to Methods of Mechanical Testing (ASTME6-03 2003, West Conshohocken, PA, USA, 2000).
40. Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).
41. Piggot, M.R.: Load-Bearing Fiber Composites: International Series on the Strength and Fracture of Materials and Structures (Pergamon press, Oxford, 1980).
42. Nardone, V.C. and Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20, 43 (1986).
43. Scudino, S., Ali, F., Surreddi, K.B., Prashanth, K.G., Sakaliyska, M., and Eckert, J.: Al-based metal matrix composites reinforced with nanocrystalline Al–Ti–Ni particles. J. Phys.: Conf. Ser. 240, 1 (2010).
44. Ramkrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44, 69 (1996).
45. Shi, N., Wilner, B., and Arsenault, R.J.: An FEM study of the plastic deformation process of whisker reinforced SiC/Al composites. Acta Metall. Mater. 40, 2841 (1992).
46. Kim, J.Y., Scudino, S., Kim, B.S., Lee, M.H., Kühn, U., and Eckert, J.: Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles. Metals 2, 79 (2012).
47. Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge Press University, New York, NY, USA, 1995).
48. Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed