Skip to main content
×
Home

Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

  • G.A. Voronin (a1), T.W. Zerda (a1), J. Gubicza (a2), T. Ungár (a3) and S.N. Dub (a4)...
Abstract

A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail address: t.zerda@tcu.edu
References
Hide All
1.Tomlinson P.N., Pipkin N.J., Lammer A. andBurnand R.P.: High performance drilling–Syndax-3 shows versatility. Ind. Diamond. Rev. 6 299 (1985).
2. A.E. Ringwood: Patent No. 601561, Australia (1988).
3.Voronin G.A., Osipov S.A. andShulzhenko A.A.: Diamond-silicon carbide based composite intended for rock drilling instruments. Mineral. J . 17, 90 (1995).
4.Voronin G.A. High pressure sintering of diamond- and CBN-based composite materials by infiltration: Main stages and regularities, in Proceedings of Joint AIRAPT-16 & HPCJ-38 Int. Conf., Jap. Soc. High Pressure Sci. Technol. Kyoto, Japan, 1997, p. 467
5.Larsson P., Axen N., Ekstrom T., Gordeev S. andHogmark S.: Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater . 17, 453 (1999).
6.Gordeev S.K., Zhukov S.K., Danchukova L.V. andEkstrom T.C.: Low-pressure fabrication of diamond-SiC-Si composites. Inorg. Mater. 37 579 (2001).
7.Ownby P.D. andLiu J.: Nano diamond enhanced silicon carbide matrix composites. Ceram. Eng. Sci. Proc . 12, 1345 (1991).
8.Ko Y.S., Tsurumi T., Fukunaga O. andYano T.: High pressure sintering of diamond-SiC composite. J. Mater. Sci. 36 469 (1992).
9.Qian J., Voronin G.A., Zerda T.W., He D. andZhao Y.: High-pressure, high-temperature sintering of diamond-SiC composites from ball-milled diamond-Si mixtures. J. Mater. Res. 17 2153 (2002).
10.Voronin G.A., Zerda T.W., Qian J., Zhao Y., He D., and Dub S.N., Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 1477 (2003).
11.Jiang X. andKlages C.P.: Synthesis of diamond/β–SiC composite films by microwave plasma assisted chemical vapor deposition. Appl. Phys. Lett. 61 1629 (1992).
12.Khvostantsev L.G., Vereshchagin L.F. andNovikov A.P.: Device of toroid type for high pressure generation. High Temp.-High Press. 9 637 (1977).
13.Anatis G.R., Chantkul P., Lawn B.R. andMarshall D.W.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64 533 (1981).
14.Ungar T., Gubicza J., Ribarik G. andBorbely A.: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34 298 (2001).
15.Wilkens M. In Fundamental Aspects of Dislocation Theory, Vol. II, edited by Simmons J.A., de Wit R., Bullough R., (U.S. National Bureau Standards, Special Publication No. 317, Washington, DC, 1970), p. 1195
16.Ungár T. andTichy G.The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 171, 425 (1999)
17.McSkimin H.J. andBond W.L.: Elastic moduli of diamond. Phys. Rev. 105 116 (1957).
18.Chung D.H. andBuessem W.R.Anisotropy of Single Crystal Refractory Compounds (Plenum Press, New York, 1968), p. 2
19.Ungár T., Dragomir I., Révész Á. andBorbély A.: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32 992 (1999).
20.Gubicza J., Kassem M., Ribárik G. andUngár T.: The evolution of the microstructure in mechanically alloyed Al-Mg studied by x-ray diffraction. Mater. Sci. Eng. A 372 115 (2004).
21.Voronin G., Pantea C., Zerda T.W. andEjsmont K.: Oriented growth of β-SiC on diamond crystals at high pressure. J. Appl. Phys. 90 5933 (2001).
22.Ozbayraktar S. In Handbook of Ceramic Hard Materials, edited by Riedl R. (Wiley-VCH, Weinheim, Germany, 2000), p. 512
23.Veprek S. In Handbook of Ceramic Hard Materials, edited by Riedl R. (Wiley-VCH, Weinheim, Germany, 2000), p. 104.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.