Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T07:19:42.235Z Has data issue: false hasContentIssue false

Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin I detection

Published online by Cambridge University Press:  24 April 2017

Suveen Kumar
Affiliation:
Nano-bioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110 042, India
Saurabh Kumar
Affiliation:
Nano-bioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110 042, India
Shine Augustine
Affiliation:
Nano-bioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110 042, India
Bansi D. Malhotra*
Affiliation:
Nano-bioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110 042, India
*
a)Address all correspondence to this author. e-mail: bansi.malhotra@gmail.com
Get access

Abstract

We report results of the studies relating to the fabrication of nanostructured zirconia (nZrO2) based immunosensor for cardiac troponin I biomarker (acute myocardial infarction) detection. One step, low temperature hydrothermal process was used for the synthesis of nZrO2 (∼5 nm). This nZrO2 was functionalized with 3-aminopropyl triethoxy silane (APTES) and thereafter it was electrophoretically deposited on to indium tin oxide (ITO) coated glass electrode. EDC/NHS surface chemistry was used for covalent immobilization of monoclonal anti-troponin-I (anti-cTnI) antibodies onto APTES/nZrO2/ITO electrode. The structural, morphological and functional characterization of the synthesized nanoparticles and the fabricated immunoelectrode were conducted via X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The results of electrochemical response studies of BSA/anti-cTnI/APTES/nZrO2/ITO immunoelectrode reveal that, this platform can be used for efficient detection of cardiac troponin I (cTnI) biomarker with a wide linear detection range (0.1–100 ng/mL) and sensitivity [3.9 µA mL/(ng cm2)].

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

References

REFERENCES

Thygesen, K., Alpert, J.S., Jaffe, A.S., Simoons, M.L., Chaitman, B.R., and White, H.D.: Third universal definition of myocardial infarction. Circulation 126, 2020 (2012).CrossRefGoogle ScholarPubMed
Lanas, F., Avezum, A., Bautista, L.E., Diaz, R., Luna, M., Islam, S., and Yusuf, S.: Risk factors for acute myocardial infarction in Latin America the INTERHEART Latin American study. Circulation 115, 1067 (2007).CrossRefGoogle ScholarPubMed
Barefoot, J.C. and Schroll, M.: Symptoms of depression, acute myocardial infarction, and total mortality in a community sample. Circulation 93, 1976 (1996).Google Scholar
Sarko, J. and Pollack, C.V.: Cardiac troponins. J. Emerg. Med. 23, 57 (2002).CrossRefGoogle ScholarPubMed
Pedrero, M., Campuzano, S., and Pingarrón, J.M.: Electrochemical biosensors for the determination of cardiovascular markers: A review. Electroanalysis 26, 1132 (2014).CrossRefGoogle Scholar
Fishbein, M.C., Wang, T., Matijasevic, M., Hong, L., and Apple, F.S.: Myocardial tissue troponins T and I: An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc. Pathol. 12, 65 (2003).Google Scholar
Wu, A.H., Feng, Y-J., Moore, R., Apple, F.S., McPherson, P.H., Buechler, K.F., and Bodor, G.: Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clin. Chem. 44, 1198 (1998).Google Scholar
Wang, J., Ibáñez, A., Chatrathi, M.P., and Escarpa, A.: Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 73, 5323 (2001).CrossRefGoogle ScholarPubMed
Hayes, M.A., Petkus, M.M., Garcia, A.A., Taylor, T., and Mahanti, P.: Demonstration of sandwich and competitive modulated supraparticle fluoroimmunoassay applied to cardiac protein biomarker myoglobin. Analyst 134, 533 (2009).Google Scholar
Shiomi, T., Matsui, M., Mizukami, F., and Sakaguchi, K.: A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 26, 5564 (2005).Google Scholar
Shen, W., Tian, D., Cui, H., Yang, D., and Bian, Z.: Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens. Bioelectron. 27, 18 (2011).CrossRefGoogle ScholarPubMed
Bogomolova, A., Komarova, E., Reber, K., Gerasimov, T., Yavuz, O., Bhatt, S., and Aldissi, M.: Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal. Chem. 81, 3944 (2009).Google Scholar
Kumar, S., Sharma, J.G., Maji, S., and Malhotra, B.D.: A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv. 6, 77037 (2016).Google Scholar
Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B.K., and Malhotra, B.D.: Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuators, B 235, 1 (2016).CrossRefGoogle Scholar
Chaubey, A. and Malhotra, B.: Mediated biosensors. Biosens. Bioelectron. 17, 441 (2002).Google Scholar
Solanki, P.R., Kaushik, A., Agrawal, V.V., and Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17 (2011).Google Scholar
Kumar, S., Sharma, J.G., Maji, S., and Malhotra, B.D.: Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens. Bioelectron. 78, 497 (2016).Google Scholar
Kumar, S., Kumar, S., Srivastava, S., Yadav, B.K., Lee, S.H., Sharma, J.G., Doval, D.C., and Malhotra, B.D.: Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 73, 114 (2015).Google Scholar
Tadi, K.K., Narayanan, T.N., Arepalli, S., Banerjee, K., Viswanathan, S., Liepmann, D., Ajayan, P.M., and Renugopalakrishnan, V.: Engineered 2D nanomaterials–protein interfaces for efficient sensors. J. Mater. Res. 30, 3565 (2015).CrossRefGoogle Scholar
Das, M., Dhand, C., Sumana, G., Srivastava, A., Nagarajan, R., Nain, L., Iwamoto, M., Manaka, T., and Malhotra, B.: Electrophoretic fabrication of chitosan–zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules 12, 540 (2011).CrossRefGoogle ScholarPubMed
Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., and Malhotra, B.: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676 (2008).CrossRefGoogle ScholarPubMed
Ansari, A.A., Sumana, G., Pandey, M., and Malhotra, B.: Sol–gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. J. Mater. Res. 24, 1667 (2009).CrossRefGoogle Scholar
Kumar, S., Kumar, S., Tiwari, S., Srivastava, S., Srivastava, M., Yadav, B.K., Kumar, S., Tran, T.T., Dewan, A.K., and Mulchandani, A., Sharma, J.G., Maji, S., and Malhotra, B.D.: Biofunctionalized nanostructured zirconia for biomedical application: A smart approach for oral cancer detection. Adv. Sci. 2, 1500048 (2015).Google Scholar