Hostname: page-component-76dd75c94c-nbtfq Total loading time: 0 Render date: 2024-04-30T07:17:07.346Z Has data issue: false hasContentIssue false

Proton-induced fluorescence properties of terbium gallium garnet

Published online by Cambridge University Press:  03 March 2011

W.A. Hollerman
Affiliation:
Department of Physics, Alabama A&M University, Normal, Alabama 35762
J.H. Fisher
Affiliation:
Department of Physics, Alabama A&M University, Normal, Alabama 35762
D. Ila
Affiliation:
Department of Physics, Alabama A&M University, Normal, Alabama 35762
G.M. Jenkins
Affiliation:
Department of Physics, Alabama A&M University, Normal, Alabama 35762
L.R. Holland
Affiliation:
Department of Physics, Alabama A&M University, Normal, Alabama 35762
Get access

Abstract

The authors completed a 3 MeV proton irradiation test on a terbium gallium garnet crystal sample. The main goal was to determine the proton dose required to reduce the fluorescence intensity to half its original value (half-brightness dose) at ambient temperature. The 3 MeV proton half-brightness dose was found to be 1.25 × 1015 p/cm2 using the Birks and Black relation. This decay is comparable to other fluors irradiated by the authors. The sample exhibited a yellow glow when irradiated in a 3 MeV beam. The fluorescence spectrum was composed of four peaks at wavelengths of 487.2 nm, 542.4 nm, 589.92 nm, and 624.1 nm.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hollerman, W. A., Fisher, J. H., Holland, L. R., and Czirr, J. B., IEEE Trans. Nucl. Sci. NS40, 13551358 (October 1993).CrossRefGoogle Scholar
2Birks, J. B., Proc. Phys. Soc. (London) A63, 1294 (1950).CrossRefGoogle Scholar
3Birks, J. B., Proc. Phys. Society (London) A64, 874 (1951).Google Scholar
4Birks, J. B., and Black, F. A., Proc. Phys. Soc. (London) A64, 511 (1951).CrossRefGoogle Scholar
5Schulman, J. H., Etzel, H. W., and Allard, J. G., Appl. Phys. 28, 1792 (1957).CrossRefGoogle Scholar
6Black, F. A., Philos. Mag. 44, 263 (1953).CrossRefGoogle Scholar
7Northup, D. C. and Simpson, O., Proc. Phys. Soc. (London) A234, 815 (1956).Google Scholar
8Broser, I. and Kallmann, H., Z. Naturforsch. 2A, 439, 642 (1950).Google Scholar
9Hollerman, W. A., Fisher, J. H., Shelby, G. A., Holland, L. R., and Jenkins, G.M., IEEE Trans. Nucl. Sci. NS38(2), 184187 (April 1991).CrossRefGoogle Scholar
10Holland, L. R., Jenkins, G. M., Fisher, J. H., Hollerman, W. A., and Shelby, G.A., Nucl. Instrum. Measurements in Phys. Res. B 56, 12391241 (1991).Google Scholar
11Hollerman, W. A., Fisher, J. H., Shelby, G. A., Holland, L. R., and Jenkins, G.M., IEEE Trans. Nucl. Sci. NS39, 22952297 (December 1992).CrossRefGoogle Scholar
12Hollerman, W. A., Fisher, J. H., Shelby, G. A., Holland, L. R., and Nisen, D., Nucl. Instrum. Measurements in Phys. Res. B 68, 2831 (1992).CrossRefGoogle Scholar