Skip to main content
    • Aa
    • Aa

Pulsed laser dewetting of Au films: Experiments and modeling of nanoscale behavior

  • Sagar Yadavali (a1), Mikhail Khenner (a2) and Ramki Kalyanaraman (a3)

Ultrathin metal film dewetting continues to grow in interest as a simple means to make nanostructures with well-defined properties. Here, we explored the quantitative thickness-dependent dewetting behavior of Au films under nanosecond (ns) pulsed laser melting on glass substrates. The trend in particle spacing and diameter in the thickness range of 3–16 nm was consistent with predictions of the classical spinodal dewetting theory. The early stage dewetting morphology of Au changed from bicontinuous-type to hole-like at a thickness between 8.5 and 10 nm, and computational modeling of nonlinear dewetting dynamics also captured the bicontinuous morphology and its evolution quite well. The thermal gradient forces were found to be significantly weaker than dispersive forces in Au due to its large effective Hamaker coefficient. This also resulted in Au dewetting length scales being significantly smaller than those of other metals such as Ag and Co.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Herminghaus , K. Jacobs , K. Mecke , J. Bischof , A. Fery , M. Ibn-Elhaj , and S. Schlagowski : Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916 (1998).

J. Trice , C. Favazza , D. Thomas , H. Garcia , R. Kalyanaraman , and R. Sureshkumar : Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, 017802 (2008).

J. Ye and C.V. Thompson : Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23, 1567 (2011).

Y. Wu , J.D. Fowlkes , P.D. Rack , J.A. Diez , and L. Kondic : On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms. Langmuir 26, 11972 (2010).

C. Favazza , J. Trice , A. Gangopadhyay , H. Garcia , R. Sureshkumar , and R. Kalyanaraman : Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater. 35, 1618 (2006).

A. Sharma and R. Khanna : Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).

R. Seemann , S. Herminghaus , and K. Jacobs : Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).

G. Reiter : Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75 (1992).

A. Vrij and J.T.G. Overbeek : Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 3074 (1968).

A. Vrij : Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23 (1966).

H. Krishna , C. Favazza , A. Gangopadhyay , and R. Kalyanaraman : Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 37 (2008).

H. Krishna , R. Sachan , J. Strader , C. Favazza , M. Khenner , and R. Kalyanaraman : Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).

J. Trice , D. Thomas , C. Favazza , R. Sureshkumar , and R. Kalyanaraman : Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).

J. Bischof , D. Scherer , S. Herminghaus , and P. Leiderer : Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536 (1996).

S.J. Henley , J.D. Carey , and S.R.P. Silva : Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).

H. Krishna , J. Strader , A.K. Gangopadhyay , and R. Kalyanaraman : Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy. J. Magn. Magn. Mater. 323, 356 (2011).

H. Krishna , C. Miller , L. Longstreth-Spoor , Z. Nussinov , A.K. Gangopadhyay , and R. Kalyanaraman : Unusual size-dependent magnetization in near hemispherical co nanomagnets on SiO2 from fast pulsed laser processing. J. Appl. Phys. 103, 073902 (2008).

C. Favazza , R. Kalyanaraman , and R. Sureshkumar : Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).

M. Khenner , S. Yadavali , and R. Kalyanaraman : Formation of organized nanostructures from unstable bilayers of thin metallic liquids. Phys. Fluids 23, 122105 (2011).

J.D. Fowlkes , L. Kondic , J. Diez , Y. Wu , and P.D. Rack : Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11, 2478 (2011).

M. Khenner , S. Yadavali , and R. Kalyanaraman : Controlling nanoparticles formation in molten metallic bilayers by pulsed-laser interference heating. Math. Model. Nat. Phenom. 7, 20 (2012).

J. Wu , W. Shi , and N. Chopra : Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J. Phys. Chem. C 116, 12861 (2012).

D. Takagi , Y. Homma , H. Hibino , S. Suzuki , and Y. Kobayashi : Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 6, 2642 (2006).

M.-C. Daniel and D. Astruc : Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).

R. Marie , A. Dahlin , J. Tegenfeldt , and F. Höök : Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2, 49 (2007).

R. Brown and M. Milton : Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008).

B. Ankamwar , M. Chaudhary , and M. Sastry : Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Chem. 35, 19 (2005).

K. Hering , D. Cialla , K. Ackermann , T. Dörfer , R. Möller , H. Schneidewind , R. Mattheis , W. Fritzsche , P. Rösch , and J. Popp : SERS: A versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113 (2008).

M. Suzuki , Y. Niidome , Y. Kuwahara , N. Terasaki , K. Inoue , and S. Yamada : Surface-enhanced nonresonance Raman scattering from size-and morphology-controlled gold nanoparticle films. J. Phys. Chem. B 108, 11660 (2004).

T.A. Taton , C.A. Mirkin , and R.L. Letsinger : Scanometric dna array detection with nanoparticle probes. Science 289, 1757 (2000).

R. Elghanian , J.J. Storho , R.C. Mucic , R.L. Letsinger , and C.A. Mirkin : Selective colori-metric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).

N. Shirato , J. Strader , A. Kumar , A. Vincent , P. Zhang , A. Karakoti , P. Nacchimuthu , H. Cho , S. Seal , and R. Kalyanaraman : Thickness dependent self-limiting 1-d tin oxide nanowire arrays by nanosecond pulsed laser irradiation. Nanoscale 3, 1090 (2011).

T. Stange and D. Evans : Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13, 4459 (1997).

C. Argento and R.H. French : Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80, 6081 (1996).

H. Lu and Q. Jiang : Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109, 15463 (2005).

S. Yadavali , H. Krishna , and R. Kalyanaraman : Morphology transitions in bilayer spinodal dewetting systems. Phys. Rev. B 85, 235446 (2012).

N. Shirato , H. Krishna , and R. Kalyanaraman : Thermodynamic model for the dewetting instability in ultrathin films. J. Appl. Phys. 108, 024313 (2010).

H. Krishna , N. Shirato , C. Favazza , and R. Kalyanaraman : Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).

F.C. Nix and D. MacNair : The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597 (1941).

C.Y. Ho , R.W. Powell , and P.E. Liley : Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279 (1972).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 20
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 155 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th July 2017. This data will be updated every 24 hours.