Skip to main content
×
×
Home

Pulsed laser dewetting of Au films: Experiments and modeling of nanoscale behavior

  • Sagar Yadavali (a1), Mikhail Khenner (a2) and Ramki Kalyanaraman (a3)
Abstract
Abstract

Ultrathin metal film dewetting continues to grow in interest as a simple means to make nanostructures with well-defined properties. Here, we explored the quantitative thickness-dependent dewetting behavior of Au films under nanosecond (ns) pulsed laser melting on glass substrates. The trend in particle spacing and diameter in the thickness range of 3–16 nm was consistent with predictions of the classical spinodal dewetting theory. The early stage dewetting morphology of Au changed from bicontinuous-type to hole-like at a thickness between 8.5 and 10 nm, and computational modeling of nonlinear dewetting dynamics also captured the bicontinuous morphology and its evolution quite well. The thermal gradient forces were found to be significantly weaker than dispersive forces in Au due to its large effective Hamaker coefficient. This also resulted in Au dewetting length scales being significantly smaller than those of other metals such as Ag and Co.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ramki@utk.edu
References
Hide All
1.Herminghaus S., Jacobs K., Mecke K., Bischof J., Fery A., Ibn-Elhaj M., and Schlagowski S.: Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916 (1998).
2.Trice J., Favazza C., Thomas D., Garcia H., Kalyanaraman R., and Sureshkumar R.: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, 017802 (2008).
3.Ye J. and Thompson C.V.: Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23, 1567 (2011).
4.Xiaoyuan Hu D.G.C. and Averback R.S.: Nanoscale pattern formation in pt thin films due to ion-beam-induced dewetting. Appl. Phys. Lett. 76, 3215 (2000).
5.Wu Y., Fowlkes J.D., Rack P.D., Diez J.A., and Kondic L.: On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms. Langmuir 26, 11972 (2010).
6.Favazza C., Trice J., Gangopadhyay A., Garcia H., Sureshkumar R., and Kalyanaraman R.: Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater. 35, 1618 (2006).
7.Sharma A. and Khanna R.: Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).
8.Seemann R., Herminghaus S., and Jacobs K.: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).
9.Reiter G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75 (1992).
10.Vrij A. and Overbeek J.T.G.: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 3074 (1968).
11.Vrij A.: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23 (1966).
12.Krishna H., Favazza C., Gangopadhyay A., and Kalyanaraman R.: Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 37 (2008).
13.Krishna H., Sachan R., Strader J., Favazza C., Khenner M., and Kalyanaraman R.: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).
14.Trice J., Thomas D., Favazza C., Sureshkumar R., and Kalyanaraman R.: Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).
15.Bischof J., Scherer D., Herminghaus S., and Leiderer P.: Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536 (1996).
16.Favazza C., Kalyanaraman R., and Sureshkumar R.: Robust nanopatterning by laser-induced dewetting of metal nano films. Nanotechnology 7, 4229 (2006).
17.Henley S.J., Carey J.D., and Silva S.R.P.: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).
18.Krishna H., Strader J., Gangopadhyay A.K., and Kalyanaraman R.: Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy. J. Magn. Magn. Mater. 323, 356 (2011).
19.Krishna H., Miller C., Longstreth-Spoor L., Nussinov Z., Gangopadhyay A.K., and Kalyanaraman R.: Unusual size-dependent magnetization in near hemispherical co nanomagnets on SiO2 from fast pulsed laser processing. J. Appl. Phys. 103, 073902 (2008).
20.Favazza C., Kalyanaraman R., and Sureshkumar R.: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).
21.Khenner M., Yadavali S., and Kalyanaraman R.: Formation of organized nanostructures from unstable bilayers of thin metallic liquids. Phys. Fluids 23, 122105 (2011).
22.Fowlkes J.D., Kondic L., Diez J., Wu Y., and Rack P.D.: Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11, 2478 (2011).
23.Khenner M., Yadavali S., and Kalyanaraman R.: Controlling nanoparticles formation in molten metallic bilayers by pulsed-laser interference heating. Math. Model. Nat. Phenom. 7, 20 (2012).
24.Wu J., Shi W., and Chopra N.: Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J. Phys. Chem. C 116, 12861 (2012).
25.Takagi D., Homma Y., Hibino H., Suzuki S., and Kobayashi Y.: Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 6, 2642 (2006).
26.Daniel M.-C. and Astruc D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).
27.Marie R., Dahlin A., Tegenfeldt J., and Höök F.: Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2, 49 (2007).
28.Brown R. and Milton M.: Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008).
29.Wei A., Kim B., Sadtler B., and Tripp S.: Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. Chem. Phys. Chem. 2, 743 (2001).
30.Shipway A., Katz E., and Willner I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18 (2000).
31.Ankamwar B., Chaudhary M., and Sastry M.: Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Chem. 35, 19 (2005).
32.Hering K., Cialla D., Ackermann K., Dörfer T., Möller R., Schneidewind H., Mattheis R., Fritzsche W., Rösch P., and Popp J.: SERS: A versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113 (2008).
33.Suzuki M., Niidome Y., Kuwahara Y., Terasaki N., Inoue K., and Yamada S.: Surface-enhanced nonresonance Raman scattering from size-and morphology-controlled gold nanoparticle films. J. Phys. Chem. B 108, 11660 (2004).
34.Taton T.A., Mirkin C.A., and Letsinger R.L.: Scanometric dna array detection with nanoparticle probes. Science 289, 1757 (2000).
35.Elghanian R., Storho J.J., Mucic R.C., Letsinger R.L., and Mirkin C.A.: Selective colori-metric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).
36.Shirato N., Strader J., Kumar A., Vincent A., Zhang P., Karakoti A., Nacchimuthu P., Cho H., Seal S., and Kalyanaraman R.: Thickness dependent self-limiting 1-d tin oxide nanowire arrays by nanosecond pulsed laser irradiation. Nanoscale 3, 1090 (2011).
37.de Gennes P-G., Brochard-Wyart F., and Quere D.: Capillarity and Wetting Phenomenon (Springer, New York, 2003).
38.Stange T. and Evans D.: Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13, 4459 (1997).
39.Israelachvili J.: Intermolecular and Surface Forces (Academic Press, London, UK, 1992).
40.Argento C. and French R.H.: Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80, 6081 (1996).
41.Lu H. and Jiang Q.: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109, 15463 (2005).
42.Yadavali S., Krishna H., and Kalyanaraman R.: Morphology transitions in bilayer spinodal dewetting systems. Phys. Rev. B 85, 235446 (2012).
43.Shirato N., Krishna H., and Kalyanaraman R.: Thermodynamic model for the dewetting instability in ultrathin films. J. Appl. Phys. 108, 024313 (2010).
44.Krishna H., Shirato N., Favazza C., and Kalyanaraman R.: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).
45.Linde D.: The CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992).
46.Nix F.C. and MacNair D.: The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597 (1941).
47.Ho C.Y., Powell R.W., and Liley P.E.: Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279 (1972).
48.Pankratz L.B. and Mrazek R.V.: Thermodynamic Properties of Elements and Oxides (U.S. Dept. of the Interior, Bureau of Mines, Washington, DC, 1983).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 44
Total number of PDF views: 99 *
Loading metrics...

Abstract views

Total abstract views: 249 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.