Skip to main content
×
×
Home

PyCAC: The concurrent atomistic-continuum simulation environment

  • Shuozhi Xu (a1), Thomas G. Payne (a2), Hao Chen (a3), Yongchao Liu (a4), Liming Xiong (a3), Youping Chen (a5) and David L. McDowell (a6)...
Abstract

We present a novel distributed-memory parallel implementation of the concurrent atomistic-continuum (CAC) method. Written mostly in Fortran 2008 and wrapped with a Python scripting interface, the CAC simulator in PyCAC runs in parallel using Message Passing Interface with a spatial decomposition algorithm. Built upon the underlying Fortran code, the Python interface provides a robust and versatile way for users to build system configurations, run CAC simulations, and analyze results. In this paper, following a brief introduction to the theoretical background of the CAC method, we discuss the serial algorithms of dynamic, quasistatic, and hybrid CAC, along with some programming techniques used in the code. We then illustrate the parallel algorithm, quantify the parallel scalability, and discuss some software specifications of PyCAC; more information can be found in the PyCAC user’s manual that is hosted on www.pycac.org.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: shuozhixu@ucsb.edu
Footnotes
Hide All

Contributing Editor: Vikram Gavini

Footnotes
References
Hide All
1.Abraham, F.F., Broughton, J.Q., Bernstein, N., and Kaxiras, E.: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44, 783787 (1998).
2.McDowell, D.L.: A perspective on trends in multiscale plasticity. Int. J. Plast. 26, 12801309 (2010).
3.Bulatov, V., Abraham, F.F., Kubin, L., Devincre, B., and Yip, S.: Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669672 (1998).
4.Spearot, D.E. and Sangid, M.D.: Insights on slip transmission at grain boundaries from atomistic simulations. Curr. Opin. Solid State Mater. Sci. 18, 188195 (2014).
5.Phillips, R.: Multiscale modeling in the mechanics of materials. Curr. Opin. Solid State Mater. Sci. 3, 526532 (1998).
6.Tadmor, E.B. and Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, New York, 2012).
7.Xiong, L., Tucker, G., McDowell, D.L., and Chen, Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids, 59, 160177 (2011).
8.Xu, S., Che, R., Xiong, L., Chen, Y., and McDowell, D.L.: A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91126 (2015).
9.Chen, Y., Zimmerman, J., Krivtsov, A., and McDowell, D.L.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 13371349 (2011).
10.Chen, Y., Lee, J., and Xiong, L.: A generalized continuum theory and its relation to micromorphic theory. J. Eng. Mech. 135, 149155 (2009).
11.Xu, S.: The concurrent atomistic-continuum method: Advancements and applications in plasticity of face-centered cubic metals. Ph.D. thesis, Georgia Institute of Technology, 2016.
12.Knap, J. and Ortiz, M.: An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 18991923 (2001).
13.Eidel, B. and Stukowski, A.: A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57, 87108 (2009).
14.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: An analysis of key characteristics of the Frank–Read source process in FCC metals. J. Mech. Phys. Solids 96, 460476 (2016).
15.Xu, S., Xiong, L., Deng, Q., and McDowell, D.L.: Mesh refinement schemes for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144152 (2016).
16.Xiong, L., Rigelesaiyin, J., Chen, X., Xu, S., McDowell, D.L., and Chen, Y.: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143155 (2016).
17.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 122, 412419 (2017).
18.Xiong, L., Xu, S., McDowell, D.L., and Chen, Y.: Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. 65, 3342 (2015).
19.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7, 120 (2017).
20.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135139 (2016).
21.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study. npj Comput. Mater. 2, 15016 (2016).
22.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69, 814821 (2017).
23.Chen, Y. and Lee, J.: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85, 40954126 (2005).
24.Chen, Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).
25.Irving, J.H. and Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817829 (1950).
26.Kittel, C.: Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2004).
27.Xiong, L., Chen, Y., and Lee, J.D.: Atomistic simulation of mechanical properties of diamond and silicon carbide by a field theory. Modell. Simul. Mater. Sci. Eng. 15, 535551 (2007).
28.Xiong, L. and Chen, Y.: Coarse-grained simulations of single-crystal silicon. Modell. Simul. Mater. Sci. Eng. 17, 035002 (2009).
29.Chen, Y.: The origin of the distinction between microscopic formulas for stress and Cauchy stress. Europhys. Lett. 116, 34003 (2016).
30.Chen, Y. and Diaz, A.: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E 94, 053309 (2016).
31.Swope, W.C., Andersen, H.C., Berens, P.H., and Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 637649 (1982).
32.Sheppard, D., Terrell, R., and Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).
33.Brünger, A., Brooks, C.L. III, and Karplus, M.: Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105, 495500 (1984).
34.Evans, D.J. and Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids, 2nd ed. (Cambridge University Press, Cambridge, 2008).
35.Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation, 1st ed. (Oxford University Press, Oxford, New York, 2010).
36.Chen, X., Diaz, A., Xiong, L., McDowell, D.L., and Chen, Y.: Passing waves from atomistic to continuum. J. Comput. Phys. 354, 393402 (2018).
37.Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 36843690 (1984).
38.Deng, Q., Xiong, L., and Chen, Y.: Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int. J. Plast. 26, 14021414 (2010).
39.Deng, Q. and Chen, Y.: A coarse-grained atomistic method for 3D dynamic fracture simulation. Int. J. Multiscale Comput. Eng. 11, 227237 (2013).
40.Xiong, L. and Chen, Y.: Coarse-grained atomistic modeling and simulation of inelastic material behavior. Acta Mech. Solida Sin. 25, 244261 (2012).
41.Xiong, L., Deng, Q., Tucker, G., McDowell, D.L., and Chen, Y.: A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60, 899913 (2012).
42.Yang, S., Xiong, L., Deng, Q., and Chen, Y.: Concurrent atomistic and continuum simulation of strontium titanate. Acta Mater. 61, 89102 (2013).
43.Xiong, L., McDowell, D.L., and Chen, Y.: Nucleation and growth of dislocation loops in Cu, Al, and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633636 (2012).
44.Yang, S., Zhang, N., and Chen, Y.: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 26972716 (2015).
45.Yang, S. and Chen, Y.: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. London, Ser. A 471, 20140758 (2015).
46.Xiong, L., McDowell, D.L., and Chen, Y.: Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268278 (2014).
47.Chen, X., Xiong, L., McDowell, D.L., and Chen, Y.: Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 2226 (2017).
48.Chen, X., Li, W., Xiong, L., Li, Y., Yang, S., Zheng, Z., McDowell, D.L., and Chen, Y.: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355365 (2017).
49.Chen, X., Li, W., Diaz, A., Li, Y., Chen, Y., and McDowell, D.L.: Recent progress in the concurrent atomistic-continuum method and its application in phonon transport. MRS Commun., 7, 785797 (2017).
50.Chapra, S. and Canale, R.: Numerical Methods for Engineers, 6th ed. (McGraw-Hill Science/Engineering/Math, Boston, 2009).
51.Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).
52.Eidel, B., Hartmaier, A., and Gumbsch, P.: Atomistic simulation methods and their application on fracture. In Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, 1st ed., Gumbsch, P. and Pippan, R., eds.; CISM International Centre for Mechanical Sciences (Springer, Vienna, 2010); pp. 157. doi: 10.1007/978-3-7091-0283-1_1.
53.Tadmor, E.B. and Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques, 1st ed. (Cambridge University Press, Cambridge, New York, 2012).
54.Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, New York, 1989).
55.Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98103 (1967).
56.Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. London, Ser. A 106, 463477 (1924).
57.Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29, 64436453 (1984).
58.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
59.Li, J.: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).
60.Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 3338 (1996).
61.Begau, C., Hartmaier, A., George, E.P., and Pharr, G.M.: Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater. 59, 934942 (2011).
62.Begau, C., Hua, J., and Hartmaier, A.: A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations. J. Mech. Phys. Solids 60, 711722 (2012).
63.Schroeder, W., Martin, K., and Lorensen, B.: Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th ed. (Kitware, Clifton Park, New York, 2006).
64.Gropp, W., Hoefler, T., Thakur, R., and Lusk, E.: Using Advanced MPI: Modern Features of the Message-Passing Interface, 1st ed. (The MIT Press, Cambridge, Massachusetts, 2014).
65.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).
66.Tadmor, E.B., Ortiz, M., and Phillips, R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 15291563 (1996).
67.Pearce, O., Gamblin, T., de Supinski, B.R., Arsenlis, T., and Amato, N.M.: Load balancing N-body simulations with highly non-uniform density. In Proceedings of the 28th ACM International Conference on Supercomputing, ICS’14 (ACM, New York, NY, 2014); pp. 113122.
68.Pavia, F. and Curtin, W.A.: Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Modell. Simul. Mater. Sci. Eng. 23, 055002 (2015).
69.Biyikli, E. and To, A.C.: Multiresolution molecular mechanics: Implementation and efficiency. J. Comput. Phys. 328, 2745 (2017).
70.Hunter, A., Saied, F., Le, C., and Koslowski, M.: Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int. J. High Perform. Comput. Appl. 25, 223235 (2011).
71.Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J.R., and Wilkins-Diehr, N.: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 16, 6274 (2014).
72.Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 33933407 (1999).
73.Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS’67 (ACM, Spring, New York, NY, 1967); pp. 483485.
74.Chen, Y. and Lee, J.D.: Connecting molecular dynamics to micromorphic theory. II. Balance laws. Phys. A 322, 377392 (2003).
75.Chen, Y. and Lee, J.D.: Connecting molecular dynamics to micromorphic theory. I. Instantaneous and averaged mechanical variables. Phys. A 322, 359376 (2003).
76.Xiong, L., Chen, X., Zhang, N., McDowell, D.L., and Chen, Y.: Prediction of phonon properties of 1D polyatomic systems using concurrent atomistic-continuum simulation. Arch. Appl. Mech. 84, 16651675 (2014).
77.Kalidindi, S.R., Brough, D.B., Li, S., Cecen, A., Blekh, A.L., Congo, F.Y.P., and Campbell, C.: Role of materials data science and informatics in accelerated materials innovation. MRS Bull. 41, 596602 (2016).
78.H. Chen, S. Xu, W. Li, J. Rigelesaiyin, T. Phan, and L. Xiong: A spatial decomposition parallel algorithm for a concurrent atomistic-continuum simulator and its preliminary applications, Comput. Mater. Sci. 144, 110 (2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Xu et al. supplementary material
Figures S1-S2

 PDF (1.4 MB)
1.4 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed