Skip to main content Accessibility help
×
Home

Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization

  • Eve Donnelly (a1), Rebecca M. Williams (a2), Seth A. Downs (a3), Michelle E. Dickinson (a3), Shefford P. Baker (a4) and Marjolein C.H. van der Meulen (a5)...

Abstract

Cancellous bone plays a crucial structural role in the skeleton, yet little is known about the microstructure-mechanical property relationships of the tissue at the microscale. Cancellous tissue is characterized by a microstructure consisting of layers interspaced with transition zones with different proportions of collagen and mineral. In this study, the quasistatic and dynamic mechanical properties of lamellar and interlamellar tissue in human vertebrae were assessed with nanoindentation, and the collagen content and organization were characterized with second harmonic generation microscopy. Lamellar tissue was 35% stiffer, 25% harder, and had a 13% lower loss tangent relative to interlamellar tissue. The stiff, hard lamellae corresponded to areas of highly ordered, collagen-rich material, with a relatively low loss tangent, whereas the compliant, soft interlamellar regions corresponded to areas of disordered or collagen-poor material. These data suggest an important role for collagen in the tissue-level mechanical properties of bone.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: eld26@cornell.edu

References

Hide All
1.Weiner, S., Wagner, H.D.: The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).
2.United States Department of Health and Human Services: Bone Health and Osteoporosis: A Report of the Surgeon General (U.S. Department of Health and Human Services, Office of the Surgeon General, Rockville, MD, 2004).
3.Cummings, S.R., Nevitt, M.C., Browner, W.S., Stone, K., Fox, K.M., Ensrud, K.E., Cauley, J., Black, D., Vogt, T.M.: Risk factors for hip fracture in white women. N. Engl. J. Med. 332, 767 (1995).
4.Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59A, 954 (1977).
5.Gibson, L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18, 317 (1985).
6.Rice, J.C., Cowin, S.C., Bowman, J.A.: On the dependence of the elasticity and strength of cancellous bone on apparent density. J. Biomech. 21, 155 (1988).
7.Ulrich, D., van Rietbergen, B., Laib, A., Rüegsegger, P.: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25, 55 (1999).
8.Hert, J., Liskova, M., Landa, J.: Reaction of bone to mechanical stimuli. Part 1: Continuous and intermittent loading of tibia in rabbit. Folia Morph. Prag. 19, 290 (1971).
9.Fritton, J.C., Myers, E.R., Wright, T.M., van der Meulen, M.C.H.: Loading induces site-specific increases in mineral content assessed my microcomputed tomography of the mouse tibia. Bone 36, 1030 (2005).
10.Christofferson, J., Landis, W.J.: A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat. Rec. 230, 435 (1991).
11.Dickson, I.R.Bone, in Connective Tissue and Its Heritable Disorders edited by Royce, P.M. and Steinmann, B. (Wiley-Liss, New York, 1993), p. 249.
12.Boyde, A., Hobdell, M.H.: Scanning electron microscopy of lamellar bone. Z. Zellforsch. 93, 213 (1969).
13.Ziv, V., Sabanay, I., Arad, T., Traub, W., Weiner, S.: Transitional structures in lamellar bone. Microsc. Res. Tech. 33, 203 (1996).
14.Ascenzi, A., Bonucci, E., Bocciarelli, D.S.R.M.S.B.J.: An electron microscope study of osteon calcification. J. Ultrastruct. Res. 12, 287 (1965).
15.Giraud-Guille, M.M.: Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42, 167 (1988).
16.Hobdell, M.H., Boyde, A.: Microradiography and scanning electron microscopy of bone sections. Z. Zellforsch. 94, 487 (1969).
17.Marotti, G.: A new theory of bone lamellation. Calcif. Tissue Int. 53, S47 (1993).
18.Weiner, S., Arad, T., Sabanay, I., Traub, W.: Rotated plywood structure of primary lamellar bone in the rat: Orientations of the collagen fibril arrays. Bone 20, 509 (1997).
19.Donnelly, E., Baker, S.P., Boskey, A.L., van der Meulen, M.C.H.: Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J. Biomed. Mater. Res. 77A, 426 (2006).
20.Hengsberger, S., Kulik, A., Zysset, P.: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30, 178 (2002).
21.Xu, J., Rho, J-Y., Mishra, S.R., Fan, Z.: Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J. Biomed. Mater. Res. 67A, 719 (2003).
22.Landis, W.J., Hodgens, K.J., Arena, J., Song, M.J., McEwan, B.F.: Structural relations between collagen and mineral in bone as determined by high voltage electron tomography. Microsc. Res. Tech. 33, 192 (1996).
23.Weiner, S., Arad, T., Traub, W.: Crystal organization in rat bone lamellae. FEBS Lett. 285, 49 (1991).
24.Kozloff, K.M., Carden, A., Bergwitz, C., Forlino, A., Uveges, T.E., Morris, M.D., Marini, J.C., Goldstein, S.A.: Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J. Bone Miner. Res. 19, 614 (2004).
25.Jepsen, K.J., Schaffler, M.B., Kuhn, J.L., Goulet, R.W., Bonadio, J., Goldstein, S.A.: Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. J. Biomech. 30, 1141 (1997).
26.Mohler, W., Millard, A.C., Campagnola, P.J.: Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97 (2003).
27.Cox, G., Kable, E., Jones, A., Fraser, I., Manconi, F., Gorrell, M.D.: Three-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141, 53 (2003).
28.Williams, R.M., Zipfel, W.R., Webb, W.W.: Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88, 1377 (2005).
29.Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T., Webb, W.W.: Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100, 7075 (2003).
30.Campagnola, P.J., Loew, L.M.: Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356 (2003).
31.Galante, J., Rostoker, W., Ray, R.D.: Physical properties of trabecular bone. Calcif. Tissue Res. 5, 236 (1970).
32.Rho, J-Y., Roy, M.E., Tsui, T.Y., Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. J. Biomed. Mater. Res. 45, 48 (1999).
33.Roy, M.E., Rho, J-Y., Tsui, T.Y., Evans, N.D., Pharr, G.M.: Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J. Biomed. Mater. Res. 44, 191 (1999).
34.Rho, J-Y., Zioupos, P., Currey, J.D., Pharr, G.M.: Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295 (1999).
35.Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
36.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).
37.Baker, S.P. Analysis of depth-sensing indentation data, in Thin Films: Stresses and Mechanical Properties IV edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E., Jr., and P. Borgesen (Mater. Res. Soc. Symp. Proc.308, Pittsburgh, PA, 1993), p. 209.
38.Loubet, J-L., Lucas, B.N., Oliver, W.C.: Some measurements of viscoelastic properties with the help of nanoindentation. NIST Special Publications 896, 31 (1996).
39.Asif, S.A. Syed, Pethica, J.B. Nanoscale visoelastic properties of polymer materials, in Thin-Films—Stresses and Mechanical Properties VII edited by Cammarata, R.C., Nastasi, M., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 103.
40.Asif, S.A. Syed, Wahl, K.J., Colton, R.J., Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).
41.Zipfel, W.R., Williams, R.M., Webb, W.W.: Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369 (2003).
42.Donnelly, E., Williams, R.M., Baker, S.P., and van der Meulen, M.C.H.: Collagen content and organization relate to bone nanomechanical properties. Nano-scale viscoelastic properties of polymer materials, in Structures and Mechanical Behavior of Biological Materials edited by Fratzl, P., Landis, W.J., Wang, R., and Silver, F.H. (Mater. Res. Soc. Symp. Proc. 874, Warrendale, PA, 2005), L7.5, p. 73.
43.Boyd, R.W.: Nonlinear Optics, 2nd ed. (Academic Press, Amsterdam, The Netherlands, 2003).
44.Moreaux, L., Sandre, O., Mertz, J.: Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B Opt. Phys. 17, 1685 (2000).
45.Donnelly, E., Xiao, C., Baker, S.P., Mendelsohn, R., Boskey, A.L., van der Meulen, M.C.H.: Systematic variations in bone tissue micromechanical properties relate to composition. Trans. Orthop. Res. Soc. 30, 672 (2005).
46.Lakes, R.S., Katz, J.L., Sternstein, S.S.: Viscoelastic properties of wet cortical bone. I. Torsional and biaxial studies. J. Biomech. 12, 657 (1979).
47.Yamashita, J., Li, X., Furman, B.R., Rawls, H.R., Wang, X., Agrawal, C.M.: Collagen and bone viscoelasticity: A dynamic mechanical analysis. J. Biomed. Mater. Res. 63, 31 (2002).
48.Yee, A.F., Smith, S.A.: Molecular structure effects on the dynamic mechanical spectra of polycarbonates. Macromolecules 14, 54 (1981).
49.Rho, J-Y., Pharr, G.M.: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci.: Mater. Med. 10, 485 (1999).
50.Bushby, A.J., Ferguson, V.L., Boyde, A.: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).
51.Glimcher, M.J.: Molecular biology of mineralized tissues with particular reference to bone. Rev. Mod. Phys. 13, 359 (1959).
52.Ferguson, V.L., Bushby, A.J., Boyde, A.: Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203, 191 (2003).
53.Les, C.M., Vance, J.L., Christopherson, G., Turner, A.S., Fyhrie, D.P.: Anisotropy in compact bone viscoelastic properties is enhanced by long-term estrogen depletion in sheep. Trans. Orthop. Res. Soc. 27, 24 (2002).

Keywords

Related content

Powered by UNSILO

Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization

  • Eve Donnelly (a1), Rebecca M. Williams (a2), Seth A. Downs (a3), Michelle E. Dickinson (a3), Shefford P. Baker (a4) and Marjolein C.H. van der Meulen (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.