Skip to main content Accessibility help
×
Home

Radiation stability of nanocrystalline single-phase multicomponent alloys

  • Emil Levo (a1), Fredric Granberg (a1), Daniel Utt (a2), Karsten Albe (a2), Kai Nordlund (a1) and Flyura Djurabekova (a3)...

Abstract

In search of materials with better properties, polycrystalline materials are often found to be superior to their respective single crystalline counterparts. Reduction of grain size in polycrystalline materials can drastically alter the properties of materials. When the grain sizes reach the nanometer scale, the improved mechanical response of the materials make them attractive in many applications. Multicomponent solid-solution alloys have shown to have a higher radiation tolerance compared with pure materials. Combining these advantages, we investigate the radiation tolerance of nanocrystalline multicomponent alloys. We find that these alloys withstand a much higher irradiation dose, compared with nanocrystalline Ni, before the nanocrystallinity is lost. Some of the investigated alloys managed to keep their nanocrystallinity for twice the irradiation dose as pure Ni.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: emil.levo@helsinki.fi

References

Hide All
1.Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).
2.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).
3.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).
4.Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 63086317 (2011).
5.Hsu, C-Y., Juan, C-C., Wang, W-R., Sheu, T-S., Yeh, J-W., and Chen, S-K.: On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng., A 528, 35813588 (2011).
6.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).
7.Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., Wang, G., Wu, Y., Mi, Z., Liu, J., and Wang, H.: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).
8.Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
9.Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).
10.Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).
11.Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 23402344 (2015).
12.Zhang, Y., Jin, K., Xue, H., Lu, C., Olsen, R.J., Beland, L.K., Ullah, M.W., Zhao, S., Bei, H., Aidhy, D.S., Samolyuk, G.D., Wang, L., Caro, M., Caro, A., Stocks, G.M., Larson, B.C., Robertson, I.M., Correa, A.A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J. Mater. Res. 31, 23632375 (2016).
13.Levo, E., Granberg, F., Fridlund, C., Nordlund, K., and Djurabekova, F.: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323332 (2017).
14.Granberg, F., Djurabekova, F., Levo, E., and Nordlund, K.: Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys. Nucl. Instrum. Methods Phys. Res., Sect. B 393, 114117 (2017).
15.Kiran Kumar, N.A.P., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230244 (2016).
16.Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M-R., Robertson, I.M., Weber, W.J., and Wang, L.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).
17.Koch, L., Granberg, F., Brink, T., Utt, D., Albe, K., Djurabekova, F., and Nordlund, K.: Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).
18.Velisa, G., Ullah, M.W., Xue, H., Jin, K., Crespillo, M.L., Bei, H., Weber, W.J., and Zhang, Y.: Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 135, 5460 (2017).
19.Ullah, M.W., Xue, H., Velisa, G., Jin, K., Bei, H., Weber, W.J., and Zhang, Y.: Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys. Sci. Rep. 7, 4146 (2017).
20.Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 2431 (2006).
21.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427556 (2006).
22.Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349352 (2009).
23.Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 15691574 (2017).
24.Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., and Lu, Y.: Nanocrystalline high-entropy alloy CoCrFeNiAl0.3 thin-film coating by magnetron sputtering. Thin Solid Films 638, 383388 (2017).
25.Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 9599 (2015).
26.Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343350 (1999).
27.Zhang, S., Nordlund, K., Djurabekova, F., Granberg, F., Zhang, Y., and Wang, T.S.: Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys. Mater. Res. Lett. 5, 433439 (2017).
28.Bonny, G., Castin, N., and Terentyev, D.: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 21, 085004 (2013).
29.Zhao, S., Stocks, G.M., and Zhang, Y.: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 2404324056 (2016).
30.Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97178 (1908).
31.Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198287 (1908).
32.Voronoi, G.: Nouvelles applications des paramètres continus à théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. J. Reine Angew. Math. 136, 67182 (1909).
33.Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular dynamics with coupling to external bath. J. Chem. Phys. 81, 3684 (1984).
34.Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., Diaz de la Rubia, T., and Tarus, J.: Defect production in collision cascades in elemental semiconductors and FCC metals. Phys. Rev. B 57, 75567570 (1998).
35.Nordlund, K., Keinonen, J., Ghaly, M., and Averback, R.S.: Coherent displacement of atoms during ion irradiation. Nature 398, 4951 (1999).
36.Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).
37.Purja Pun, G.P., Yamakov, V., and Mishin, Y.: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2-L10 martensitic transformation. Modell. Simul. Mater. Sci. Eng. 23, 065006 (2015).
38.Zhang, S., Nordlund, K., Djurabekova, F., Zhang, Y., Velisa, G., and Wang, T.S.: Simulation of Rutherford backscattering spectrometry from arbitrary atom structures. Phys. Rev. E 94, 043319 (2016).
39.Nordlund, K.: Molecular dynamics simulation of ion ranges in the 1–100 keV energy range. Comput. Mater. Sci. 3, 448 (1995).
40.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).
41.Lammps molecular dynamics simulator. lammps.sandia.gov.
42.Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., and Zepeda-Ruiz, L.: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 85, 184203 (2012).
43.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
44.Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012).
45.Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).

Keywords

Type Description Title
PDF
Supplementary materials

Levo et al. supplementary material
Levo et al. supplementary material 1

 PDF (23.1 MB)
23.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed