Skip to main content
×
×
Home

Rapid sol–gel synthesis of nanodiamond aerogel

  • Sandeep Manandhar (a1), Paden B. Roder (a1), Jennifer L. Hanson (a1), Matthew Lim (a1), Bennett E. Smith (a2), Austin Mann (a3) and Peter J. Pauzauskie (a4)...
Abstract

The rapid sol–gel synthesis of macroscopic quantities of nanodiamond aerogel (NDAG) is reported at standard temperature and pressure using acid-catalyzed covalent crosslinking of air-oxidized detonation nanodiamond (DND) nanocrystals. Acetonitrile acts as a polar, aprotic solvent both to form a colloidal dispersion of DND particles and to conduct acid-catalyzed polycondensation reactions between resorcinol and formaldehyde (RF) small molecule precursors. Several characterization techniques show that nanodiamond grains are connected via covalent bonding with RF molecules to form a porous, three-dimensional network. Solvent exchange into liquid carbon dioxide and subsequent supercritical drying of NDAGs are used to recover low-density (151 mg/cm3), three-dimensional monolithic aerogels that exhibit surface areas in excess of 589 m2/g. The large accessible pore volume from the rapidly synthesized, macroscopic NDAG materials suggests a range of potential applications in catalysis, sensing, energy storage, as well as inert excipients for small-molecule pharmaceuticals.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: peterpz@uw.edu
References
Hide All
1.Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11 (2012).
2.Fu, C-C., Lee, H-Y., Chen, K., Lim, T-S., Wu, H-Y., Lin, P-K., Wei, P-K., Tsao, P-H., Chang, H-C., and Fann, W.: Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 104(3), 727 (2007).
3.Kim, H-J., Zhang, K., Moore, L., and Ho, D.: Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8, 29983005 (2014).
4.Wang, Q., Plylahan, N., Shelke, M.V., Devarapalli, R.R., Li, M.S., Subramanian, P., Djenizian, T., Boukherroub, R., and Szunerits, S.: Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 68, 175 (2014).
5.Shenderova, O., Panich, A.M., Moseenkov, S., Hens, S.C., Kuznetsov, V., and Vieth, H.M.: Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J. Phys. Chem. C 115(39), 19005 (2011).
6.Mohan, N., Tzeng, Y-K., Yang, L., Chen, Y-Y., Hui, Y.Y., Fang, C-Y., and Chang, H-C.: Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22(7), 843 (2010).
7.Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M., and Yu, Y.C.: Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127(50), 17604 (2005).
8.Chang, Y.R., Lee, H.Y., Chen, K., Chang, C.C., Tsai, D.S., Fu, C.C., Lim, T.S., Tzeng, Y.K., Fang, C.Y., Han, C.C., Chang, H.C., and Fann, W.: Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3(5), 284 (2008).
9.Neugart, F., Zappe, A., Jelezko, F., Tietz, C., Boudou, J.P., Krueger, A., and Wrachtrup, J.: Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7(12), 3588 (2007).
10.Zhu, D., Zhang, L.H., Ruther, R.E., and Hamers, R.J.: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12(9), 836 (2013).
11.Kim, K.D., Dey, N.K., Seo, H.O., Kim, Y.D., Lim, D.C., and Lee, M.: Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition. Appl. Catal., A 408(1–2), 148 (2011).
12.Vlasov, I.I., Shiryaev, A.A., Rendler, T., Steinert, S., Lee, S-Y., Antonov, D., Voros, M., Jelezko, F., Fisenko, A.V., Semjonova, L.F., Biskupek, J., Kaiser, U., Lebedev, O.I., Sildos, I., Hemmer, P.R., Konov, V.I., Gali, A., and Wrachtrup, J.: Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9(1), 54 (2014).
13.Chang, H.C., Chen, K.W., and Kwok, S.: Nanodiamond as a possible carrier of extended red emission. Astrophys. J. 639(2), L63 (2006).
14.Ustinova, G.K.: Production of anomalous Xe in nanodiamond in chondrites during the last supernova explosion predating the origin of the solar system. Geochem. Int. 49(6), 555 (2011).
15.Jones, A.P.: The mineralogy of cosmic dust: Astromineralogy. Eur. J. Mineral. 19(6), 771 (2007).
16.Korobov, M.V., Avramenko, N.V., Bogachev, A.G., Rozhkova, N.N., and Ōsawa, E.: Nanophase of water in nano-diamond gel. J. Phys. Chem. C 111(20), 7330 (2007).
17.Pauzauskie, P.J., Crowhurst, J.C., Worsley, M.A., Laurence, T.A., Kilcoyne, A.L.D., Wang, Y., Willey, T.M., Visbeck, K.S., Fakra, S.C., Evans, W.J., Zaug, J.M., and Satcher, J.H. Jr.: Synthesis and characterization of a nanocrystalline diamond aerogel. Proc. Natl. Acad. Sci. U.S.A. 108(21), 8550 (2011).
18.Mandal, M. and Landskron, K.: Synthetic chemistry with periodic mesostructures at high pressure. Acc. Chem. Res. 46(11), 2536 (2013).
19.Brownlee, D., Tsou, P., Aleon, J., Alexander, C.M.O., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet, P., Borg, J., Bradley, J.P., Brearley, A., Brenker, F., Brennan, S., Bridges, J.C., Browning, N.D., Brucato, J.R., Bullock, E., Burchell, M.J., Busemann, H., Butterworth, A., Chaussidon, M., Cheuvront, A., Chi, M.F., Cintala, M.J., Clark, B.C., Clemett, S.J., Cody, G., Colangeli, L., Cooper, G., Cordier, P., Daghlian, C., Dai, Z.R., D'Hendecourt, L., Djouadi, Z., Dominguez, G., Duxbury, T., Dworkin, J.P., Ebel, D.S., Economou, T.E., Fakra, S., Fairey, S.A.J., Fallon, S., Ferrini, G., Ferroir, T., Fleckenstein, H., Floss, C., Flynn, G., Franchi, I.A., Fries, M., Gainsforth, Z., Gallien, J.P., Genge, M., Gilles, M.K., Gillet, P., Gilmour, J., Glavin, D.P., Gounelle, M., Grady, M.M., Graham, G.A., Grant, P.G., Green, S.F., Grossemy, F., Grossman, L., Grossman, J.N., Guan, Y., Hagiya, K., Harvey, R., Heck, P., Herzog, G.F., Hoppe, P., Horz, F., Huth, J., Hutcheon, I.D., Ignatyev, K., Ishii, H., Ito, M., Jacob, D., Jacobsen, C., Jacobsen, S., Jones, S., Joswiak, D., Jurewicz, A., Kearsley, A.T., Keller, L.P., Khodja, H., Kilcoyne, A.L.D., Kissel, J., Krot, A., Langenhorst, F., Lanzirotti, A., Le, L., Leshin, L.A., Leitner, J., Lemelle, L., Leroux, H., Liu, M.C., Luening, K., Lyon, I., MacPherson, G., Marcus, M.A., Marhas, K., Marty, B., Matrajt, G., McKeegan, K., Meibom, A., Mennella, V., Messenger, K., Messenger, S., Mikouchi, T., Mostefaoui, S., Nakamura, T., Nakano, T., Newville, M., Nittler, L.R., Ohnishi, I., Ohsumi, K., Okudaira, K., Papanastassiou, D.A., Palma, R., Palumbo, M.E., Pepin, R.O., Perkins, D., Perronnet, M., Pianetta, P., Rao, W., Rietmeijer, F.J.M., Robert, F., Rost, D., Rotundi, A., Ryan, R., Sandford, S.A., Schwandt, C.S., See, T.H., Schlutter, D., Sheffield-Parker, J., Simionovici, A., Simon, S., Sitnitsky, I., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Stroud, R., Susini, J., Sutton, S.R., Suzuki, Y., Taheri, M., Taylor, S., Teslich, N., Tomeoka, K., Tomioka, N., Toppani, A., Trigo-Rodriguez, J.M., Troadec, D., Tsuchiyama, A., Tuzzolino, A.J., Tyliszczak, T., Uesugi, K., Velbel, M., Vellenga, J., Vicenzi, E., Vincze, L., Warren, J., Weber, I., Weisberg, M., Westphal, A.J., Wirick, S., Wooden, D., Wopenka, B., Wozniakiewicz, P., Wright, I., Yabuta, H., Yano, H., Young, E.D., Zare, R.N., Zega, T., Ziegler, K., Zimmerman, L., Zinner, E., and Zolensky, M.: Comet 81P/Wild 2 under a microscope. Science 314(5806), 1711 (2006).
20.Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S.O., and Gogotsi, Y.: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635 (2006).
21.Kruger, A., Liang, Y., Jarre, G., and Stegk, J.: Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16(24), 2322 (2006).
22.Gaebel, T., Bradac, C., Chen, J., Say, J.M., Brown, L., Hemmer, P., and Rabeau, J.R.: Size-reduction of nanodiamonds via air oxidation. Diamond Relat. Mater. 21(0), 28 (2012).
23.Yusuf, S., Krahenbuhl, M., Haskins, B., and Hartman, M.: Improving neutron activation analysis accuracy for the measurement of gold in the characterization of heterogeneous catalysts using a TRIGA reactor. J. Radioanal. Nucl. Chem. 296(1), 23 (2013).
24.Soete, D., Gijbels, R., and Hoste, J.: Neutron Activation Analysis (Wiley-Interscience, London and New York, 1972).
25.Mulik, S., Sotiriou-Leventis, C., and Leventis, N.: Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19(25), 6138 (2007).
26.Mitev, D.P., Townsend, A.T., Paull, B., and Nesterenko, P.N.: Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60(0), 326 (2013).
27.Ji, S., Jiang, T., Xu, K., and Li, S.: FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 133(4), 231 (1998).
28.Jiang, T. and Xu, K.: FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33(12), 1663 (1995).
29.Kuznetsov, V.L., Aleksandrov, M.N., Zagoruiko, I.V., Chuvilin, A.L., Moroz, E.M., Kolomiichuk, V.N., Likholobov, V.A., Brylyakov, P.M., and Sakovitch, G.V.: Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29(4–5), 665 (1991).
30.Yeap, W.S., Tan, Y.Y., and Loh, K.P.: Using detonation nanodiamond for the specific capture of glycoproteins. Anal. Chem. 80(12), 4659 (2008).
31.Lambert, J.B., Shurvell, H.F., and Cooks, R.G.: Introduction to Organic Spectroscopy, 1st ed. (Macmillan, New York, 1987).
32.Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M.: Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diamond Relat. Mater. 10(3–7), 561 (2001).
33.Lin, C. and Ritter, J.A.: Effect of synthesis pH on the structure of carbon xerogels. Carbon 35(9), 1271 (1997).
34.Cotet, L.C., Danciu, V., Cosoveanu, V., Popescu, I.C., Anna, R., and Molins, E.: Synthesis of meso- and macroporous carbon aerogels. Rev. Roum. Chim. 52(11), 1077 (2007).
35.Song, M.S., Nahm, S., and Oh, Y.J.: Preparation and electrochemical properties of carbon cryogel for supercapacitor. J. Korean Ceram. Soc. 45(11), 662 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 20
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 450 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th August 2018. This data will be updated every 24 hours.