Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-31T05:26:51.125Z Has data issue: false hasContentIssue false

Reactive IrO2 sputtering in reducing/oxidizing atmospheres

Published online by Cambridge University Press:  03 March 2011

J.D. Klein
Affiliation:
ElC Laboratories, Norwood, Massachusetts 02062
S.L. Clauson
Affiliation:
ElC Laboratories, Norwood, Massachusetts 02062
S.F. Cogan
Affiliation:
ElC Laboratories, Norwood, Massachusetts 02062
Get access

Abstract

An Ir metal target was reactively rf sputtered in a planar magnetron source to develop iridium oxide deposition conditions. Gas blends of hydrogen, oxygen, and argon were used to provide competitive control over the reduction/oxidation characteristics of the sputter plasma. Optical emission spectroscopy allowed direct observation of hydrogen, oxygen, and iridium atomic peaks and OH molecular bands. Each of the twelve gas flow conditions could be clearly defined as either reducing or oxidizing by plasma emission spectroscopy. A given plasma reduction/oxidation state can be maintained over a wide range of gas flow conditions by coordinated adjustment of hydrogen and oxygen flows. The electrochemical properties of the iridium oxide films change dramatically in the vicinity of the reduction/oxidation plasma transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klein, J. D., Clauson, S. L., and Cogan, S. F., J. Vac. Sci. Technol. A 7, 3043 (1989).CrossRefGoogle Scholar
2Klein, J. D., Clauson, S. L., and Cogan, S. F., J. Mater. Res. 4, 1505 (1989).CrossRefGoogle Scholar
3Gavaler, J. R., Talvacchio, J., Braggins, T. T., Forrester, M. G., and Greggi, J., J. Appl. Phys. 70, 4383 (1991).CrossRefGoogle Scholar
4Cukauskas, E. J., Allen, L. H., Sherrill, G. K., and Holm, R. T., Appl. Phys. Lett. 61, 1125 (1992).CrossRefGoogle Scholar
5Krumme, J-P., Hack, R. A. A., and Raaijmakers, I. J. M. M., J. Appl. Phys. 70, 6743 (1991).CrossRefGoogle Scholar
6Robblee, L. S., Lefko, J., and Brummer, S. Ba., J. Electrochem. Soc. 130, 731 (1983).CrossRefGoogle Scholar
7Cogan, S. F., Plante, T. D., McFadden, R. S., and Rauh, R. D., Solar Energy Mater. 16, 371 (1987).CrossRefGoogle Scholar
8Klein, J. D. and Yen, A., J. Vac. Sci. Technol. A 9, 2791 (1991).CrossRefGoogle Scholar
9Klein, J. D. and Yen, A., J. Appl. Phys. 70, 505 (1991).CrossRefGoogle Scholar
10Klein, J. D. and Yen, A., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Turtle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), pp. 167172.Google Scholar
11Klein, J. D. and Yen, A., in Solid State Ionics II, edited by Nazri, G-A., Shriver, D. F., Huggins, R. A., and Balkanski, M. (Mater. Res. Soc. Symp. Proc. 210, Pittsburgh, PA, 1991), pp. 7580.Google Scholar
12Semonov, N. N., Some Problems in Chemical Kinetics and Reactivity (Princeton University Press, Princeton, NJ, 1959), Vol. 2.Google Scholar
13Lewis, B. and von Elbe, G., Combustion, Flames, and Explosions of Gases (Academic Press, Orlando, FL, 1987).Google Scholar
14Gaydon, A. G., The Spectroscopy of Flames (Chapman and Hall, London, 1974), p. 364.CrossRefGoogle Scholar
15CRC Handbook of Chemistry and Physics, 59th ed., edited by Weast, R. C. (CRC Press, West Palm Beach, FL, 1978), pp. E216342.Google Scholar