Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T00:17:16.896Z Has data issue: false hasContentIssue false

Reactive melt infiltration of silicon-niobium alloys in microporous carbons

Published online by Cambridge University Press:  03 March 2011

M. Singh
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135
D.R. Behrendt
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135
Get access

Abstract

Studies of the reactive melt infiltration of silicon-niobium alloys in microporous carbon preforms prepared by the pyrolysis of a polymer precursor have been carried out using modeling, DTA, and melt infiltration. Mercury porosimetry results indicate a very narrow pore size distribution with virtually all the porosity within the carbon preforms open to infiltrants. The morphology and amount of the residual phases (niobium disilicide and silicon) in the infiltrated material can be tailored according to requirements by careful control of the properties (pore size and pore volume) of the porous carbon preforms and alloy composition. The average room temperature four-point fiexural strength of a reaction-formed silicon carbide material (made by the infiltration of medium pore size carbon preform with Si–5 at. % Nb alloy) is 290 ± 40 MPa (42 ± 6 ksi) and the fracture toughness is 3.7 ± 0.3 . The fiexural strength decreases at high temperatures due to relaxation of residual thermal stresses and the presence of free silicon in the material.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fitzer, E. and Gadow, R., Am. Ceram. Soc. Bull. 65 (2), 325335 (1986).Google Scholar
2Lamicq, P. J., Bernhart, G. A., Dauchier, M. M., and Mace, J. G., Am. Ceram. Soc. Bull. 65 (2), 336338 (1986).Google Scholar
3Hucke, E. E., AMMRC Report, TR-83-5 (1983).Google Scholar
4Washburn, M. E. and Coblenz, W. S., Ceram. Bull. 67 (2), 356363 (1988).Google Scholar
5Behrendt, D. R., Singh, M., and Dacek, R. F., The 16th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA CP-3175 (1992).Google Scholar
6Singh, M. and Behrendt, D. R., NASA-TM-105860 (1992).Google Scholar
7Behrendt, D. R. and Singh, M., J. Mater. Synth, and Processing 2 (2), 133139 (1994).Google Scholar
8Chiang, Y-M., Messner, R. P., Terwilliger, C., and Behrendt, D. R., Mater. Sci. Eng. A144, 6374 (1991).CrossRefGoogle Scholar
9Binary Alloy Phase Diagrams (ASM INTERNATIONAL, Materials Park, OH, 1990), pp. 27642769.Google Scholar
10Pampuch, R., Bialoskorski, J., and Walasek, E., Ceram. Int. 13, 6368 (1987).CrossRefGoogle Scholar
11Pampuch, R., Stobierski, L., Lis, J., and Racza, M., Mater. Res. Bull. XXII, 12251231 (1987).CrossRefGoogle Scholar
12Messner, R. P. and Chiang, Y-M., J. Am. Ceram. Soc. 73 (5), 11931200 (1990).CrossRefGoogle Scholar
13Pampuch, R., Walasek, E., and Bialoskorski, J., Ceram. Int. 12, 99106 (1986).CrossRefGoogle Scholar
14Singh, M., Pawlik, R., Salem, J. A., and Behrendt, D. R., Advances in Ceramic Matrix Composites (The American Ceramic Society, Westerville, OH, 1993), 349360.Google Scholar
15Singh, M. and Behrendt, D. R., unpublished research.Google Scholar
16Swain, M. V., Trans. Mater. Res. Soc. Jpn., 219275 (1990).CrossRefGoogle Scholar