Skip to main content

Recent progress in graphene based ceramic composites: a review

  • Kalaimani Markandan (a1), Jit Kai Chin (a1) and Michelle T.T. Tan (a2)

Research on graphene has been developing at a relentless pace as it holds the promise of delivering composites with exceptional properties. In particular, the excellent mechanical properties of graphene make it a potentially good reinforcement ingredient in ceramic composites while their impressive electrical conductivity has roused interest in the area of multifunctional applications. However, the potential of graphene can only be fully exploited if they are homogenously embedded into ceramic matrices. Thus, suitable processing route is critical in obtaining ceramic composites with desired properties. This paper reviews the current understanding of graphene ceramic matrix composites (GCMC) with three particular topics: (i) principles and techniques for graphene dispersion, (ii) processing of GCMC, and (iii) effects of graphene on properties of GCMC. Besides, toughening mechanisms and percolation phenomenon that may occur in these composites are elaborated with appropriate examples. Challenges and perspectives for future progress in applications are also highlighted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent progress in graphene based ceramic composites: a review
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent progress in graphene based ceramic composites: a review
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent progress in graphene based ceramic composites: a review
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Soldano, C., Mahmood, A., and Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127 (2010).
2. Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183 (2007).
3. Centeno, A., Rocha, V.G., Alonso, B., Fernández, A., Gutierrez-Gonzalez, C.F., Torrecillas, R., and Zurutuza, A.: Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 33(15–16), 3201 (2013).
4. Miranzo, P., Ramírez, C., Román-Manso, B., Garzón, L., Gutiérrez, H.R., Terrones, M., Ocal, C., Osendi, M.I., and Belmonte, M.: In situ processing of electrically conducting graphene/SiC nanocomposites. J. Eur. Ceram. Soc. 33(10), 1665 (2013).
5. Yazdani, B., Xia, Y., Ahmad, I., and Zhu, Y.: Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 35(1), 179 (2015).
6. Markandan, K., Tan, M.T.T., Chin, J., and Lim, S.S.: A novel synthesis route and mechanical properties of Si–O–C cured Yytria stabilised zirconia (YSZ)–graphene composite. Ceram. Int. 41(3), 3518 (2015).
7. Cho, J., Boccaccini, A.R., and Shaffer, M.S.P.: Ceramic matrix composites containing carbon nanotubes. J. Mater. Sci. 44(8), 1934 (2009).
8. Gómez-navarro, C., Burghard, M., and Kern, K.: Elastic properties of chemically derived single graphene sheets 2008. Nano Lett. 8(7), 2045 (2008).
9. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S.: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56(8), 1178 (2011).
10. Koller, A.: Structure and Properties of Ceramics (Elsevier Publishing Company, Amsterdam, 1994).
11. Sternitzke, M.: Review: Structural ceramic nanocomposites. J. Eur. Ceram. Soc. 17, 1061 (1997).
12. Choi, S.M. and Awaji, H.: Nanocomposites—A new material design concept. Sci. Technol. Adv. Mater. 6(1), 2 (2005).
13. Vivek Dhand, D.H.J., Rhee, K.Y., and Kim, H.J.: A comprehensive review of graphene nanocomposites: Research status and trends. J. Nanomater. 2013, 1 (2013).
14. Yadhukulakrishnan, G.B., Karumuri, S., Rahman, A., Singh, R.P., Kaan Kalkan, A., and Harimkar, S.P.: Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites. Ceram. Int. 39(6), 6637 (2013).
15. Lahiri, D., Khaleghi, E., Bakshi, S.R., Li, W., Olevsky, E.A., and Agarwal, A.: Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite. Scr. Mater. 68(5), 285 (2013).
16. Kim, K-I. and Hong, T.W.: Hydrogen permeation of TiN–graphene membrane by hot press sintering (HPS) process. Solid State Ionics 225, 699 (2012).
17. Tapasztó, O., Tapasztó, L., Markó, M., Kern, F., Gadow, R., and Balázsi, C.: Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340 (2011).
18. Inam, F., Yan, H., Reece, M., and Peijs, T.: Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv. Appl. Ceram. 109(4), 240 (2010).
19. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723 (2010).
20. Rul, S., Lefèvre-schlick, F., Capria, E., Laurent, C., and Peigney, A.: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater. 52(4), 1061 (2004).
21. Kim, S.W., Chung, W.S., Sohn, K.S., Son, C-Y., and Lee, S.: Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mater. Sci. Eng., A 517(1–2), 293 (2009).
22. Ahmad, I., Cao, H., Chen, H., Zhao, H., Kennedy, A., and Zhu, Y.Q.: Carbon nanotube toughened aluminium oxide nanocomposite. J. Eur. Ceram. Soc. 30(4), 865 (2010).
23. Tkalya, E.E., Ghislandi, M., de With, G., and Koning, C.E.: The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225 (2012).
24. Yamamoto, G., Omori, M., Hashida, T., and Kimura, H.: A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19(31), 315708 (2008).
25. Chintapalli, R.K., Marro, F.G., Milsom, B., Reece, M., and Anglada, M.: Processing and characterization of high-density zirconia–carbon nanotube composites. Mater. Sci. Eng., A 549, 50 (2012).
26. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites, Part A 41(10), 1345 (2010).
27. Sahithi, R., Harshit, B., Mansi, K., Ganesh, B., and Vijayakumar, R.P.: A review on synthesis of CNTs and its application in conductive paints. Int. Adv. Res. J. Sci. Eng. Technol. 2(3), 17148 (2015).
28. Guo, Z., Mao, J., Ouyang, Q., Zhu, Y., He, L., Lv, X., Liang, L., Ren, D., Chen, Y., and Zheng, J.: Noncovalent functionalization of single-walled carbon nanotube by porphyrin: Dispersion of carbon nanotubes in water and formation of self-assembly donor–acceptor nanoensemble. J. Disper. Sci. Technol. 31(1), 57 (2009).
29. Wang, K., Wang, Y., Fan, Z., Yan, J., and Wei, T.: Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46(2), 315 (2011).
30. Gkikas, G., Barkoula, N.M., and Paipetis, A.S.: Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composites, Part B 43(6), 2697 (2012).
31. Aparna, R., Sivakumar, N., Balakrishnan, A., Sreekumar Nair, A., Nair, S.V., and Subramanian, K.R.V.: An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J. Renewable Sustainable Energy 5(3), 033123 (2013).
32. An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K.M., Washington, M., Nayak, S.K., Talapatra, S., and Kar, S.: Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 10(11), 4295 (2010).
33. Walker, L.S., Marotto, V.R., Rafiee, M.a., Koratkar, N., and Corral, E.L.: Toughening in graphene ceramic composites. ACS Nano 5(4), 3182 (2011).
34. Dusza, J., Morgiel, J., Duszová, A., Kvetková, L., and Nosko, M.: Microstructure and fracture toughness of Si3N4 + graphene platelet composites. J. Eur. Ceram. Soc. 32, 3389 (2012).
35. Kun, P., Tapasztó, O., Wéber, F., and Balázsi, C.: Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites. Ceram. Int. 38(1), 211 (2012).
36. Liu, X., Fan, Y.C., Li, J.L., Wang, L.J., and Jiang, W.: Preparation and mechanical properties of graphene nanosheet reinforced alumina composites. Adv. Eng. Mater. 17(1), 28 (2015).
37. Chen, B., Liu, X., Zhao, X., Wang, Z., Wang, L., Jiang, W., and Li, J.: Preparation and properties of reduced graphene oxide/fused silica composites. Carbon 77, 66 (2014).
38. Kim, H., Lee, S., Oh, Y., Yang, Y., and Lim, Y.: Unoxidized graphene/alumina nanocomposite: Fracture-and wear-resistance effects of graphene on alumina matrix. Sci. Rep. 4, 5176 (2014).
39. Ivanov, R., Hussainova, I., Aghayan, M., and Petrov, M.: Graphene coated alumina nanofibers as zirconia reinforcement. Presented at the 9th Int. DAAAM Balt. Conf. 348 (2014).
40. Wu, Y. and Kim, G.Y.: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211(8), 1341 (2011).
41. Esawi, A. and Morsi, K.: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites, Part A 38(2), 646 (2007).
42. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., and Lanka, S.: The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites, Part A 42(3), 234 (2011).
43. Bastwros, M., Kim, G.Y., Zhu, C., Zhang, K., Wang, S., Tang, X., and Wang, X.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites, Part B 60, 111 (2014).
44. Pierard, N., Fonseca, A., Colomer, J.F., Bossuot, C., Benoit, J.M., Van Tendeloo, G., Pirard, J.P., and Nagy, J.B.: Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 42(8–9), 1691 (2004).
45. Rincón, A., Moreno, R., Chinelatto, A.S.A., Gutierrez, C.F., Rayón, E., Salvador, M.D., and Borrell, A.: Al2O3–3YTZP–graphene multilayers produced by tape casting and spark plasma sintering. J. Eur. Ceram. Soc. 34(10), 2427 (2014).
46. Wu, P., Lv, H., Peng, T., He, D., and Mu, S.: Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 4, 3968 (2014).
47. Low, F.W., Lai, C.W., and Abd Hamid, S.B.: Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 41(4), 5798 (2015).
48. Schmid, C. and Klingenberg, D.: Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84(2), 290 (2000).
49. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).
50. Hernandez, Y., Nicolosi, V., and Lotya, M.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).
51. Skaltsas, T., Ke, X., Bittencourt, C., and Tagmatarchis, N.: Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J. Phys. Chem. C 117(44), 23272 (2013).
52. Zhao, W., Wu, F., Wu, H., and Chen, G.: Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 1 (2010).
53. Kukovecz, Á., Kanyó, T., Kónya, Z., and Kiricsi, I.: Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon 43(5), 994 (2005).
54. He, T., Li, J., Wang, L., Zhu, J., and Jiang, W.: Preparation and consolidation of alumina/graphene composite powders. Mater. Trans. 50(4), 749 (2009).
55. Fan, Y., Wang, L., Li, J., Li, J., Sun, S., Chen, F., Chen, L., and Jiang, W.: Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon 48(6), 1743 (2010).
56. Fan, Y., Jiang, W., and Kawasaki, A.: Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Adv. Funct. Mater. 22(18), 3882 (2012).
57. Hvizdoš, P., Dusza, J., and Balázsi, C.: Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Ceram. Soc. 33(12), 2359 (2013).
58. Ramirez, C. and Osendi, M.I.: Toughening in ceramics containing graphene fillers. Ceram. Int. 40(7), 11187 (2014).
59. Michálková, M., Kašiarová, M., Tatarko, P., Dusza, J., and Šajgalík, P.: Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites. J. Eur. Ceram. Soc. 34(14), 3291 (2014).
60. Román-Manso, B., Sánchez-González, E., Ortiz, A.L., Belmonte, M., Isabel Osendi, M., and Miranzo, P.: Contact-mechanical properties at pre-creep temperatures of fine-grained graphene/SiC composites prepared in situ by spark-plasma sintering. J. Eur. Ceram. Soc. 34(5), 1433 (2014).
61. Chen, Y.F., Bi, J.Q., Yin, C.L., and You, G.L.: Microstructure and fracture toughness of graphene nanosheets/alumina composites. Ceram. Int. 40(9), 13883 (2014).
62. Bartolucci, S.F., Paras, J., Rafiee, M.a., Rafiee, J., Lee, S., Kapoor, D., and Koratkar, N.: Graphene–aluminum nanocomposites. Mater. Sci. Eng., A 528(27), 7933 (2011).
63. Rutkowski, P., Stobierski, L., Zientara, D., Jaworska, L., Klimczyk, P., and Urbanik, M.: The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites. J. Eur. Ceram. Soc. 35(1), 87 (2015).
64. Liu, J., Yan, H., and Jiang, K.: Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 39(6), 6215 (2013).
65. Liu, J., Yan, H., Reece, M.J., and Jiang, K.: Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32(16), 4185 (2012).
66. Tapasztó, O., Markó, M., and Balázsi, C.: Distribution patterns of different carbon nanostructures in silicon nitride composites. J. Nanosci. Nanotechnol. 12(11), 8775 (2012).
67. Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S-E., Chen, S-F., Liu, C-P., Nguyen, S.T., and Ruoff, R.S.: Graphene–silica composite thin films as transparent conductors. Nano Lett. 7(7), 1888 (2007).
68. Narasimman, R., Vijayan, S., and Prabhakaran, K.: Graphene–reinforced carbon composite foams with improved strength and EMI shielding from sucrose and graphene oxide. J. Mater. Sci. 50(24), 8018 (2015).
69. Zheng, C., Feng, M., Zhen, X., Huang, J., and Zhan, H.: Materials investigation of multi-walled carbon nanotubes doped silica gel glass composites. J. Non-Cryst. Solids 354, 1327 (2008).
70. Colombo, P., Mera, G., Riedel, R., and Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805 (2010).
71. Riedel, R., Mera, G., Hauser, R., and Klonczynski, A.: Silicon-based polymer-derived ceramics: Synthesis properties and applications—A review. J. Ceram. Soc. Jpn. 114(1330), 425 (2006).
72. Porwal, H., Grasso, S., and Reece, M.J.: Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 112(8), 443 (2013).
73. Ionescu, E., Francis, A., and Riedel, R.: Dispersion assessment and studies on AC percolative conductivity in polymer-derived Si–C–N/CNT ceramic nanocomposites. J. Mater. Sci. 44(8), 2055 (2009).
74. Ji, F., Li, Y.L., Feng, J.M., Su, D., Wen, Y.Y., Feng, Y., and Hou, F.: Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem. 19(47), 9063 (2009).
75. Cheah, K.H. and Chin, J.K.: Fabrication of embedded microstructures via lamination of thick gel-casted ceramic layers. Int. J. Appl. Ceram. Technol. 11, 384 (2013).
76. Sarin, V., Mari, D., Llanes, L., and Nebel, C.E.: Comprehensive Hard Materials (Elsevier, Amsterdam, 2014); p. 164.
77. Lee, B., Koo, M.Y., Jin, S.H., Kim, K.T., and Hong, S.H.: Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 78, 212 (2014).
78. Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H., and Jeon, S.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25(46), 6724 (2013).
79. Dimaio, J., Rhyne, S., Yang, Z., Fu, K., Czerw, R., Xu, J., Webster, S., Sun, Y., Carroll, D.L., and Ballato, J.: Transparent silica glasses containing single walled carbon nanotubes. J. Inf. Sci. 149, 69 (2003).
80. Jeong, H., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J., and Lee, Y.H.: Thermal stability of graphite oxide. Chem. Phys. Lett. 470(4–6), 255 (2009).
81. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763 (2006).
82. Garay, J.E.: Current-activated, pressure-assisted densification of materials. Annu. Rev. Mater. Res. 40(1), 445 (2010).
83. Hulbert, D.M., Jiang, D., Dudina, D.V., and Mukherjee, A.K.: The synthesis and consolidation of hard materials by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 27(2), 367 (2009).
84. Milsom, B., Viola, G., Gao, Z., Inam, F., Peijs, T., and Reece, M.J.: The effect of carbon nanotubes on the sintering behaviour of zirconia. J. Eur. Ceram. Soc. 32(16), 4149 (2012).
85. Shin, J.H. and Hong, S.H.: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics. J. Eur. Ceram. Soc. 34(5), 1297 (2014).
86. Porwal, H., Tatarko, P., Grasso, S., Khaliq, J., Dlouhý, I., and Reece, M.J.: Graphene reinforced alumina nano-composites. Carbon 64, 359 (2013).
87. Kwon, S.M., Lee, S.J., and Shon, I.J.: Enhanced properties of nanostructured ZrO2–graphene composites rapidly sintered via high-frequency induction heating. Ceram. Int. 41(1), 835 (2015).
88. Ahmad, I., Islam, M., Abdo, H.S., Subhani, T., Khalil, K.A., Almajid, A.a., Yazdani, B., and Zhu, Y.: Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater. Des. 88, 1234 (2015).
89. Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., and Wilshaw, P.R.: Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35(6), 1865 (2015).
90. Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93(11), 3556 (2010).
91. Grasso, S., Yoshida, H., Porwal, H., Sakka, Y., and Reece, M.: Highly transparent α-alumina obtained by low cost high pressure SPS. Ceram. Int. 39(3), 3243 (2013).
92. Kvetková, L., Duszová, A., Hvizdoš, P., Dusza, J., Kun, P., and Balázsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr. Mater. 66(10), 793 (2012).
93. Balko, J., Hvizdoš, P., Dusza, J., Balázsi, C., and Gamcová, J.: Wear damage of Si3N4–graphene nanocomposites at room and elevated temperatures. J. Eur. Ceram. Soc. 34(14), 3309 (2014).
94. Belmonte, M., Ramírez, C., González-Julián, J., Schneider, J., Miranzo, P., and Osendi, M.I.: The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61, 431 (2013).
95. Liang, B., Song, Z., Wang, M., Wang, L., and Jiang, W.: Fabrication and thermoelectric properties of graphene/Bi2Te3 composite materials. J. Nanomater. 2013, 210767 (2013).
96. Liu, L. and Wagner, H.D.: Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos. Sci. Technol. 65(11–12), 1861 (2005).
97. Quinn, G.D. and Bradt, R.C.: On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90(3), 673 (2007).
98. Ponton, C. and Rawlings, R.: Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations. Mater. Sci. Technol. 5(9), 865 (1989).
99. ASTM C 1421–99: in Annu. B. Stand. 15.01 ASTM (West Conshohocken, 1999).
100. CEN TS 14425: in Eur. Comm. Stand. Parts 1–5. (2003).
101. Wang, X., Padture, N.P., and Tanaka, H.: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat. Mater. 3(8), 539 (2004).
102. Quinn, J.B., Sundar, V., and Lloyd, I.K.: Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent. Mater. 19(7), 603 (2003).
103. ISO 15732: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Fracture Toughness of Monolithic Ceramics at Room Temperature by Single Edge Precracked Beam (SEPB) Method (Geneva, 2003).
104. ISO 18756: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Fracture Toughness of Monolithic Ceramics at Room Temperature by the Surface Crack in Flexure (SCF) Method (Geneva, 2003).
105. Sheldon, B. and Curtin, W.: Nanoceramic composites: Tough to test. Nat. Mater. 3(8), 505 (2004).
106. Gogotsi, G., Galenko, V., and Ozerskii, B.: Fracture toughness, strength, and other characteristics of yttria-stabilized zirconium ceramics. Refract. Ind. Ceram. 41(8), 257 (2000).
107. Chuck, L., Fuller, E.R., and Freiman, S.W.: Chevron-notch Specimens: Testing and Stress Analysis, ASTM STP 855 (ASTM International, Philadelphia, 1984); p. 167.
108. Dusza, J., Blugan, G., Morgiel, J., Kuebler, J., Inam, F., Peijs, T., Reece, M.J., and Puchy, V.: Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. J. Eur. Ceram. Soc. 29(15), 3177 (2009).
109. Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., and Sumant, A.V.: Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv. Funct. Mater. 24(42), 6640 (2014).
110. Li, H., Xie, Y., Li, K., Huang, L., Huang, S., Zhao, B., and Zheng, X.: Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceram. Int. 40(8), 12821 (2014).
111. Zhang, W., Dehghani-Sanij, A.a., and Blackburn, R.S.: Carbon based conductive polymer composites. J. Mater. Sci. 42(10), 3408 (2007).
112. Grossiord, N., Loos, J., Regev, O., and Koning, C.: Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18, 1089 (2006).
113. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008).
114. Balberg, I. and Binenbaum, N.: Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Phys. Rev. B: Condens. Matter Mater. Phys. 28(7), 3799 (1983).
115. Hashemi, R. and Weng, G.J.: A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96, 474 (2016).
116. Çelik, Y., Çelik, A., Flahaut, E., and Suvaci, E.: Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites. J. Eur. Ceram. Soc. 36(8), 2075 (2016).
117. McLachlan, D.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187 (1990).
118. Ramirez, C., Garzón, L., Miranzo, P., Osendi, M.I., and Ocal, C.: Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy. Carbon 49(12), 3873 (2011).
119. Ramirez, C., Figueiredo, F.M., Miranzo, P., Poza, P., and Osendi, M.I.: Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10), 3607 (2012).
120. Shin, J.H. and Hong, S.H.: Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics. Mater. Sci. Eng., A 556, 382 (2012).
121. Čapková, P., Matějka, V., Tokarský, J., Peikertová, P., Neuwirthová, L., Kulhánková, L., Beňo, J., and Stýskala, V.: Electrically conductive aluminosilicate/graphene nanocomposite. J. Eur. Ceram. Soc. 34(12), 3111 (2014).
122. Mohammad-Rezaei, R., Razmi, H., and Jabbari, M.: Graphene ceramic composite as a new kind of surface-renewable electrode: Application to the electroanalysis of ascorbic acid. Microchim. Acta 181(15–16), 1879 (2014).
123. Zhou, M., Lin, T., Huang, F., Zhong, Y., Wang, Z., Tang, Y., Bi, H., Wan, D., and Lin, J.: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 23(18), 2263 (2013).
124. Gutierrez-Gonzalez, C.F., Smirnov, A., Centeno, A., Fernández, A., Alonso, B., Rocha, V.G., Torrecillas, R., Zurutuza, A., and Bartolome, J.F.: Wear behavior of graphene/alumina composite. Ceram. Int. 41(6), 7434 (2015).
125. Eda, G. and Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed