Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T18:22:09.385Z Has data issue: false hasContentIssue false

Relationship between layered crystal structure and mechanical properties of M3AlN (M = Zr and Hf): A first-principles investigation

Published online by Cambridge University Press:  31 January 2011

Jiemin Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Jingyang Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Fangzhi Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Yanchun Zhou
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: jywang@imr.ac.cn
Get access

Abstract

Bonding character, elastic mechanical parameters, ideal strengths, and atomistic shear deformation mechanisms of M3AlN (M = Zr and Hf) were studied by first-principles method. M3AlN exhibits layered chemical bonding character due to the alternately stacking of relatively soft Al–M and strong N–M covalent bonds. The second-order elastic constants and mechanical parameters of M3AlN were reported for the first time. The stress–strain relationships for different deformation modes were studied and the ideal shear and tensile strength were obtained. M3AlN ceramics are predicted to be “quasi-ductile” layered nitrides based on the low shear-modulus-to-bulk-modulus ratios, positive Cauchy pressure (c12c44), and lower ideal shear strength compared to ideal tensile strength. Investigation of the atomistic shear deformation mechanism of Hf3AlN shows that stretching of soft Al–Hf bonds and relatively weak bridge N–Hf1 bonds dominate the shear deformation; while the rigid N–Hf2 bonds resist against the applied shear strain. Chemical bonding characteristics and shear deformation mechanism of M3AlN are similar with those of other “quasi-ductile” ceramics, such as MAX phases, LaPO4 monazite, and γ-Y2Si2O7. The results further suggest that M3AlN nitrides should be quasi-ductile and damage tolerant.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nowotny, H. and Windisch, S.: High temperature compounds. Annu. Rev. Mater. Sci. 3, 171 (1973).CrossRefGoogle Scholar
2.Barsoum, M.W.: The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
3.Wang, J.Y., Zhou, Y.C., Lin, Z.J., and Liao, T.: First-principles investigation on chemical bonding and bulk modulus of ternary carbide Zr2Al3C5. Phys. Rev. B 72, 052102 (2005).CrossRefGoogle Scholar
4.Lin, Z.J., Zhuo, M.J., He, L.F., Zhou, Y.C., Li, M.S., and Wang, J.Y.: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Mater. 54, 3843 (2006).CrossRefGoogle Scholar
5.He, L.F., Zhou, Y.C., Bao, Y.W., and Wang, J.Y.: Synthesis and oxidation of Zr3Al3C5 powders. Int. J. Mater. Res. 98, 3 (2007).CrossRefGoogle Scholar
6.He, L.F., Zhou, Y.C., Bao, Y.W., Lin, Z.J., and Wang, J.Y.: Synthesis, physical, and mechanical properties of bulk Zr3Al3C5 ceramic. J. Am. Ceram. Soc. 90, 1164 (2007).CrossRefGoogle Scholar
7.He, L.F., Wang, J.Y., Bao, Y.W., and Zhou, Y.C.: Elastic and thermal properties of Zr2Al3C4: Experimental investigations and ab initio calculations. J. Appl. Phys. 102, 043531 (2007).CrossRefGoogle Scholar
8.He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S., and Zhou, Y.C.: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 (2007).CrossRefGoogle Scholar
9.Lin, Z.J., He, L.F., Li, M.S., Wang, J.Y., and Zhou, Y.C.: Layered stacking characteristics of ternary zirconium aluminum carbides. J. Mater. Res. 22, 3058 (2007).CrossRefGoogle Scholar
10.He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., and Zhou, Y.C.: Crystal structure and theoretical elastic property of two new ternary ceramics Hf3Al4C6 and Hf2Al4C5. Scr. Mater. 58, 679 (2008).CrossRefGoogle Scholar
11.Wang, J.Y., Zhou, Y.C., Lin, Z.J., Liao, T., and He, L.F.: First-principles prediction of the mechanical properties and electronic structure of ternary aluminum carbide Zr3Al3C5. Phys. Rev. B 73, 134107 (2006).CrossRefGoogle Scholar
12.Wang, J.Y., Zhou, Y.C., Lin, Z.J., and Liao, T.: Pressure-induced polymorphism in Al3BC3: A first-principles study. J. Solid State Chem. 179, 2703 (2006).Google Scholar
13.Li, F.Z., Zhou, Y.C., He, L.F., Liu, B., and Wang, J.Y.: Synthesis, microstructure, and mechanical properties of Al3BC3. J. Am. Ceram. Soc. 91, 2343 (2008).CrossRefGoogle Scholar
14.Wang, J.Y., Zhou, Y.C., Liao, T., and Lin, Z.J.: First-principles prediction of low shear-strain resistance of Al3BC3: A metal borocarbide containing short linear BC2 units. Appl. Phys. Lett. 89, 021917 (2006).CrossRefGoogle Scholar
15.Liao, T., Wang, J.Y., and Zhou, Y.C.: Atomistic deformation modes and intrinsic brittleness of Al4SiC4: A first-principles investigation. Phys. Rev. B 74, 174112 (2006).CrossRefGoogle Scholar
16.Zhou, Y.C. and Sun, Z.M.: Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics. Phys. Rev. B 61, 12570 (2000).CrossRefGoogle Scholar
17.Zhou, Y.C., Wang, X.H., Sun, Z.M., and Chen, S.Q.: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 (2001).CrossRefGoogle Scholar
18.Liao, T., Wang, J.Y., and Zhou, Y.C.: Basal-plane slip systems and polymorphic phase transformation in Ti2AlC and Ti2AlN: A first-principles study. J. Phys. Condens. Matter 18, 6183 (2006).CrossRefGoogle Scholar
19.Liao, T., Wang, J.Y., and Zhou, Y.C.: Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations. Phys. Rev. B 73, 214109 (2006).CrossRefGoogle Scholar
20.Liao, T., Wang, J.Y., and Zhou, Y.C.: Superior mechanical properties of Nb2AsC to those of other layered ternary carbides: A first-principles study. J. Phys. Condens. Matter 18, L527 (2006).CrossRefGoogle Scholar
21.Music, D., Sun, Z.M., Voevodin, A.A., and Schneider, J.M.: Electronic structure and shearing in nanolaminated ternary carbides. Solid State Commun. 139, 139 (2006).CrossRefGoogle Scholar
22.Music, D., Houben, A., Dronskowski, R., and Schneider, J.M.: Ab initio study of ductility in M2AlC (M = Ti, V, Cr). Phys. Rev. B 75, 174102 (2007).CrossRefGoogle Scholar
23.Wang, J.M., Wang, J.Y., Zhou, Y.C., and Hu, C.F.: Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study. Acta Mater. 56, 1511 (2008).CrossRefGoogle Scholar
24.Schuster, J.S., Bauer, J., and Debuigne, J.: Investigation of phase equilibria relation to fusion reaction materials: I. The ternary system Zr–Al–N. J. Nucl. Mater. 116, 131 (1983).CrossRefGoogle Scholar
25.Schuster, J.S. and Bauer, J.: Investigation of phase equilibria relation to fusion reaction materials: I. The ternary system Hf–Al–N. J. Nucl. Mater. 120, 133 (1984).CrossRefGoogle Scholar
26.Schuster, J.S.: The crystal structure of Zr3AlN. Z. Kristallogr. 175, 211 (1986).Google Scholar
27.Li, F.Z., Hu, C.F., Wang, J.M., Liu, B., Wang, J.Y., and Zhou, Y.C.: Crystal structure and electronic structure of a novel Hf3AlN ceramic. J. Am. Ceram. Soc. 92, 476 (2009).CrossRefGoogle Scholar
28.Wang, J.Y., Zhou, Y.C., and Lin, Z.J.: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).CrossRefGoogle Scholar
29.Wang, J.Y., Zhou, Y.C., and Lin, Z.J.: Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations. Acta Mater. 55, 6019 (2007).CrossRefGoogle Scholar
30.Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).CrossRefGoogle Scholar
31.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
32.Ceperley, D.M. and Alder, B.J.: Ground states of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
33.Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
34.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Application of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).CrossRefGoogle ScholarPubMed
35.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations—A reply. Phys. Rev. B 16, 1748 (1977).Google Scholar
36.Fischer, T.H. and Almlof, J.: General methods for geometry and wavefunction optimization. J. Phys. Chem. 96, 9768 (1992).CrossRefGoogle Scholar
37.Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys. Condens. Matter 13, 241 (2001).CrossRefGoogle Scholar
38.Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J., and Eriksson, O.: Density-functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
39.Nielsen, O.H. and Martin, R.M.: First-principles calculation of stress. Phys. Rev. Lett. 50, 697 (1983).CrossRefGoogle Scholar
40.Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), p. 153.Google Scholar
41.Wu, Z., Chen, X.J., Struzhkin, V.V., and Cohen, R.E.: Trends in elasticity and electronic structure of transition nitrides and carbides from first-principles. Phys. Rev. B 71, 214103 (2005).CrossRefGoogle Scholar
42.Chen, X.J., Struzhkin, V.V., Wu, Z., Somayazulu, M., Qian, J., Kung, S., Christens, A.N., Zhao, Y., Cohen, R.E., Mao, H.K., and Hemley, R.J.: Hard superconducting nitrides. Proc. Nat. Acad. Sci. USA. 102, 3198 (2005).CrossRefGoogle ScholarPubMed
43.Vitos, L., Korzhavyi, P.A., and Johansson, B.: Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2, 25 (2003).CrossRefGoogle ScholarPubMed
44.Music, D., Sun, Z.M., and Schneider, J.M.: Structure and bonding of M2SbP (M = Ti, Zr, Hf). Phys. Rev. B 71, 092102 (2005).CrossRefGoogle Scholar
45.Music, D. and Schneider, J.M.: Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88, 031914 (2006).CrossRefGoogle Scholar
46.Pettifor, D.G.: Theoretical predication of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
47.Lawn, B.R., Padture, N.P., Cait, H., and Guiberteau, F.: Making ceramics “ductile.” Science 263, 1114 (1994).CrossRefGoogle ScholarPubMed
48.Kelly, A.: Strong Solids (Oxford University Press, London, 1966).Google Scholar