Skip to main content
×
Home
    • Aa
    • Aa

Residual stress in electrodeposited nanocrystalline nickel-tungsten coatings

  • Tiffany D. Ziebell (a1) and Christopher A. Schuh (a1)
Abstract
Abstract

Characterizing the residual stress of thick nanocrystalline electrodeposits poses several unique challenges due to their fine grain structure, thickness distribution, and matte surface. We use a three-dimensional profilometry-based approach that addresses each of these complicating factors and enables quantitative analysis of residual stress with reasonable accuracy. The specific emphasis of this work is on thick (10–100 μm), nanocrystalline Ni-W electrodeposits of the finest grain sizes (4–63 nm), in which residual stresses arise during the deposition process as well as during postdeposition annealing. The present measurements offer quantitative insight into the mechanisms of stress development and evolution in these alloys, suggesting that the grain boundary structure is out of equilibrium (unrelaxed) and contains the excess free volume that controls the resulting residual stress levels in these films. There are apparently two factors contributing to this stress: the percentage of excess free volume contained in the grain boundaries, which is affected by the processing conditions, and the total volume fraction of grain boundaries, which is controlled by the grain size.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: schuh@mit.edu
References
Hide All
1. H. Gleiter : Nanocrystalline materials. Prog. Mater Sci. 33, 223315 (1989).

2. S.C. Tjong and H. Chen : Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45, 188 (2004).

3. K.S. Kumar , H. Van Swygenhoven , and S. Suresh : Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 57435774 (2003).

4. R. Grossinger , R. Sato , D. Holzer , and M. Dahlgren : Properties, benefits, and application of nanocrystalline structures in magnetic materials. Adv. Eng. Mater. 5, 285290 (2003).

5. D.C. Jiles : Recent advances and future directions in magnetic materials. Acta Mater. 51, 59075939 (2003).

6. M.A. Meyers , A. Mishra , and D.J. Benson : Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427556 (2006).

7. C. Suryanarayana : Nanocrystalline materials. Int. Mater. Rev. 40, 4164 (1995).

8. L. Lu , Y. Shen , X. Chen , L. Qian , and K. Lu : Ultrahigh strength and high electrical conductivity in copper. Science 304, 422426 (2004).

10. A. Chianpairot , G. Lothongkum , C.A. Schuh , and Y. Boonyongmaneerat : Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5 wt.% NaCl solutions. Corros. Sci. 53, 10661071 (2011).

11. A.J. Detor and C.A. Schuh : Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371379 (2007).

12. T.J. Rupert and C.A. Schuh : Sliding wear of nanocrystalline Ni-W: Structural evolution and the apparent breakdown of archard scaling. Acta Mater. 58, 41374148 (2010).

14. M.D. Drory , M.D. Thouless , and A.G. Evans : On the decohesion of residually stressed thin films. Acta Metall. 36, 20192028 (1988).

15. F. Czerwinski and Z. Kedzierski : On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits. J. Mater. Sci. 32, 29572961 (1997).

17. I.C. Noyan and J.B. Cohen : Residual Stress: Measurement by Diffraction and Interpretation (Springer-Verlag, New York, NY, 1987).

21. C.N. Kouyumdjiev : Residual-stress distribution by the bending strip method. Surf. Coat. Technol. 28, 3955 (1986).

22. G.S. Sotirova-Chakarova and S.A. Armyanov : The internal-stress in Ni, Nife, Cofe, and Coni layers measured by the bent strip method. J. Electrochem. Soc. 137, 35513558 (1990).

23. G.G. Stoney : The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172175 (1909).

24. P.A. Flinn , D.S. Gardner , and W.D. Nix : Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron Devices 34, 689699 (1987).

25. J.F. Geisz , T.F. Kuech , M.G. Lagally , F. Cardone , and R.M. Potemski : Film stress of sputtered W/C multilayers and strain relaxation upon annealing. J. Appl. Phys. 75, 15301533 (1994).

26. J.T. Pan and I. Blech : In situ stress measurement of refractory-metal silicides during sintering. J. Appl. Phys. 55, 28742880 (1984).

27. A.K. Sinha , H.J. Levinstein , and T.E. Smith : Thermal-stresses and cracking resistance of dielectric films (Sin, Si3n4, and Sio2) on Si substrates. J. Appl. Phys. 49, 24232426 (1978).

28. C.A. Volkert : Stress and plastic-flow in silicon during amorphization by ion-bombardment. J. Appl. Phys. 70, 35213527 (1991).

29. Z.B. Zhao , J. Hershberger , S.M. Yalisove , and J.C. Bilello : Determination of residual stress in thin films: A comparative study of x-ray topography versus laser curvature method. Thin Solid Films 415, 2131 (2002).

30. S.J. Hearne and J.A. Floro : Mechanisms inducing compressive stress during electrodeposition of Ni. J. Appl. Phys. 97, 6 (2005).

31. J.R. Trelewicz and C.A. Schuh : Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B: Condens. Matter 79, 094112094113 (2009).

32. Z. Zhang , F. Zhou , and E. Lavernia : On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Trans. A 34, 13491355 (2003).

35. I.L. Dillamore and W.T. Roberts : Preferred orientation in wrought and annealed materials. Metall. Rev. 10, 271380 (1965).

36. L.B. Freund , J.A. Floro , and E. Chason : Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74, 19871989 (1999).

37. S. Mehdizadeh , J. Dukovic , P.C. Andricacos , L.T. Romankiw , and H.Y. Cheh : Optimization of electrodeposit uniformity by the use of auxiliary electrodes. J. Electrochem. Soc. 137, 110117 (1990).

38. M.F. Doerner and W.D. Nix : Stresses and deformation processes in thin-films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225268 (1988).

42. J.R. Trelewicz and C.A. Schuh : The Hall-Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications. Appl. Phys. Lett. 93, Art. No. 171916 (2008).

44. S. Armyanov and G. Sotirovachakarova : Hydrogen desorption and internal-stress in nickel coatings obtained by periodic electrodeposition. J. Electrochem. Soc. 139, 34543457 (1992).

45. R.K. Dorsch : Simultaneous electrodeposition of nickel and hydrogen on a rotating disk electrode. J. Electroanal. Chem. Interfacial Electrochem. 21, 495 (1969).

46. D.R. Gabe : The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 27, 908915 (1997).

47. R. Abermann , R. Koch , and R. Kramer : Electron-microscope structure and internal-stress in thin silver and gold-films deposited onto MgF2 and SiO substrates. Thin Solid Films 58, 365370 (1979).

48. R. Abermann , R. Kramer , and J. Maser : Structure and internal-stress in ultrathin silver films deposited on MgF2 and SiO substrates. Thin Solid Films 52, 215229 (1978).

49. F.A. Doljack and R.W. Hoffman : Origins of stress in thin nickel films. Thin Solid Films 12, 71 (1972).

50. R.W. Hoffman : Stresses in thin-films—relevance of grain-boundaries and impurities. Thin Solid Films 34, 185190 (1976).

51. M. Janda and O. Stefan : Intrinsic stress in chromium thin-films measured by a novel method. Thin Solid Films 112, 127137 (1984).

52. K. Kinosita , K. Maki , K. Nakamizo , and K. Takeuchi : Stress in vacuum deposited films of silver. Jpn. J. Appl. Phys. 6, 42 (1967).

54. E. Klokholm and B.S. Berry : Intrinsic stress in evaporated metal films. J. Electrochem. Soc. 115, 823 (1968).

55. W. Buckel : Internal stresses. J. Vac. Sci. Technol. 6, 606 (1969).

56. P. Chaudhari : Grain-growth and stress relief in thin-films. J. Vac. Sci. Technol. 9, 520 (1972).

58. S.Y. Ruan and C.A. Schuh : Kinetic Monte Carlo simulations of nanocrystalline film deposition. J. Appl. Phys. 107, 11 (2010).

59. H.K. Pulker : Mechanical-properties of optical films. Thin Solid Films 89, 191204 (1982).

60. M.V. Speight and W. Beere : Vacancy potential and void growth on grain boundaries. Met. Sci. 9, 190 (1975).

61. G. Palumbo , S.J. Thorpe , and K.T. Aust : On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scr. Metall. Mater. 24, 13471350 (1990).

62. Y. Chen and C.A. Schuh : Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scr. Mater. 57, 253256 (2007).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 264 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.