Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-05T04:24:06.839Z Has data issue: false hasContentIssue false

Room-temperature epitaxy of Cu on Si(111) using partially ionized beam deposition

Published online by Cambridge University Press:  31 January 2011

P. Bai
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
G-R. Yang
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
L. You
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
T-M. Lu
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
D.B. Knorr
Affiliation:
Center for Integrated Electronics and Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

The epitaxial growth of Cu on Si(111) substrate at room temperature was achieved using the Partially Ionized Beam (PIB) deposition technique in a conventional (10−4 Pa) vacuum without prior in situ cleaning of the substrate or post-annealing of the film. The beam contained ≍2% of Cu self-ions, and a bias of 0 to 4.2 kV was applied to the substrate during deposition. X-ray diffraction studies showed the existence of a twin structure in the epitaxial Cu layer deposited at 1 kV. A mechanism of epitaxial growth of Cu(111) on Si(111) substrate via an η″—Cu3Si intermediate phase is proposed. Based on the crystal structure of η″—Cu3Si, it is demonstrated that the geometrical lattice matching concept provides a simple picture of lattice continuity at the interface in this epitaxial system.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For review, see Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), p. 127; J.E. Green, Solid State Technology 30 (4), 115 (1987).Google Scholar
2Itoh, T., Nakamura, T., Muromachi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 15, 1145 (1976); T. Itoh and T. Nakamura, ibid., 16, 553 (1977).CrossRefGoogle Scholar
3Narusawa, T., Shimuzu, S., and Komiya, S., J. Vac. Sci. Technol. 16, 366 (1979).CrossRefGoogle Scholar
4Takagi, T., J. Vac. Sci. Technol. A2, 382 (1984) and references therein.CrossRefGoogle Scholar
5Rockett, A., Barnett, A. S., and Green, J. E., J. Vac. Sci. Technol. B2, 306(1984).CrossRefGoogle Scholar
6Hassan, M. A., Barnett, A.S., Sundgren, J.E., and Green, J.E., J. Vac. Sci. Technol. A5, 1883 (1987).CrossRefGoogle Scholar
7Mei, S-N. and Lu, T-M., J. Vac. Sci. Technol. A6, 9 (1988).CrossRefGoogle Scholar
8Yapsir, A. S., Bai, P., and Lu, T-M., Appl. Phys. Lett. 53, 905 (1988).CrossRefGoogle Scholar
9Choi, C-H., Harper, R. A., Yapsir, A. S., and Lu, T-M., Appl. Phys. Lett. 51, 1992 (1988); C-H. Choi, R. Ramayanan, S-N. Mei, and T-M. Lu (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 93, p. 267.CrossRefGoogle Scholar
10Mei, S-N., Lu, T-M., and Roberts, S., IEEE Electronic Devices Lett. EDL-8, 503 (1987).CrossRefGoogle Scholar
11Bai, P., Lu, T-M., and Roberts, S., Proc. IEEE VLSI Multilevel Interconnection Conference, Electron Device Society, New York (1988), p. 382.Google Scholar
12Hu, C-K., Chang, S., Small, M. B., and Lewis, J.E., V-MIC Conf. June 9–10, 1986, p. 181.Google Scholar
13Miyazaki, H., Homma, K., and Mukai, K., Extended Abstracts of 48th Fall Meeting, Jpn. Soc. Appl. Phys., 1987, p. 16.Google Scholar
14Ohmi, T., Kawasaki, T., Saito, T., Kuwabara, H., and Nitta, T., Technical Meeting of Tech. Group on Electronic Materials, The Institute of Electrical Engineers of Japan, Sendai, November 1987, paper no. EFM-87–24.Google Scholar
15Brotherton, S. D., Ayres, J. R., Gill, A., van Kestern, H.W., and Greidanus, F. J. A. M., J. Appl. Phys. 62 (5), 1826 (1987).CrossRefGoogle Scholar
16Ohmi, T., Saito, T., Shibata, T., and Nitta, T., Appl. Phys. Lett. 52, 2236 (1988).CrossRefGoogle Scholar
17Sosnowski, M. and Yamada, I., Proc. Int. Conf. on Ion Implantation Technology-IIT ‘88, June 1988, Kyoto, Japan, p. 1.Google Scholar
18LeGoues, F. K., Krakow, M., and Ho, P.S., Philos. Mag. B 53, 833 (1986).CrossRefGoogle Scholar
19LeGoues, F. K., Liehr, M., Renier, M., and Krakow, W., Philos. Mag. B 57, 179 (1988).CrossRefGoogle Scholar
20Park, K-H., Jin, H-S., Luo, L., Gibson, W. M., Wang, G-C., and Lu, T-M. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 102, p. 271.Google Scholar
21Kern, W. and Puotlineu, D. A., RCA Rev. 31, 187 (1970).Google Scholar
22Zur, A. and McGill, T. C., J. Appl. Phys. 55, 2 (1984).CrossRefGoogle Scholar
23Yapsir, A. S., You, L., Lu, T-M., and Madden, M., J. Mater. Res. 4 (2), 343 (1989).CrossRefGoogle Scholar
24Ringeisen, F., Derrien, J., Daugy, E., Layet, J. M., Mathiez, P., and Salvan, F., J. Vac. Sci. Technol. Bl, 546 (1983).CrossRefGoogle Scholar
25Rossi, G., Kendelewicz, T., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. Al, 987 (1983).CrossRefGoogle Scholar
26Rossi, G. and Lindau, I., Phys. Rev. B 28, 3587 (1983).Google Scholar
27Abboti, I. and Grioni, M., J. Vac. Sci. Technol. 19, 631 (1981).CrossRefGoogle Scholar
28Daugy, E., Mathiez, P., Salvan, F., and Layet, J. M., Surf. Sci. 154, 267 (1985).CrossRefGoogle Scholar
29Taleb-Ibrahimi, A., Mercier, V., Sebenne, C.A., Bolmont, D., and Chen, P., Surf. Sci. 152/153, 1228 (1985).CrossRefGoogle Scholar
30Calandra, C., Bisi, O., and Ovttaviani, G., Surf. Sci. Rep. 4, 271 (1984).CrossRefGoogle Scholar
31LeLay, G., Surf. Sci. 132, 168 (1983).Google Scholar
32Rossi, G., Surf. Sci. Rep. 7, 1101 (1987).CrossRefGoogle Scholar
33Calliari, L., Marchetti, F., and Saucrotti, M., Phys. Rev. B 34, 521 (1986).CrossRefGoogle Scholar
34Hasen, W., Constitution of Binary Alloys (McGraw-Hill, New York, 1985), p. 629.Google Scholar
35Solberg, J.K., Acta Cryst. A34, 684 (1978).CrossRefGoogle Scholar
36Weber, G., Gillot, B., and Barret, P., Phys. Status Solidi (a) 75, 567 (1983).CrossRefGoogle Scholar
37Chambers, S.A. and Weaver, J.H., J. Vac. Sci. Technol A3, 1929 (1985).CrossRefGoogle Scholar
38Venables, A., Derrien, J., and Janssen, A. P., Surf. Sci. 95, 411 (1980).CrossRefGoogle Scholar
39Selvaraj, R., Yang, S-N., McDonald, J. F., and Lu, T-M., Proc. IEEE VLSI Multilevel Interconnection Conference, Electron Device Society, New York (1987), p. 440.Google Scholar
40Stowell, M. J., in Epitaxial Growth, Part B, edited by Matthews, J. W. (Academic Press, New York, 1975), pp. 437492.CrossRefGoogle Scholar
41Chambers, S. A., Howell, G. A., Greenlee, T. R., and Weaver, J. H., Phys. Rev. B 31, 6402 (1985).CrossRefGoogle Scholar
42Boltaks, B.I., Diffusion in Semiconductors (Academic Press, New York, 1963), p. 216.Google Scholar
43Fazzio, A., Caldas, M.J., and Zunger, A., Phys. Rev. B 32, 934 (1985).CrossRefGoogle Scholar
44Chambers, S. A., Anderson, S. B., and Weaver, J. H., Appl. Surf. Sci. 26, 542 (1986).CrossRefGoogle Scholar
45Chambers, S.A., Greenlee, T.R., and Howell, G.A., J. Vac. Sci. Technol. A3, 1291 (1985).CrossRefGoogle Scholar
46Wilcox, W.R. and LaChapelle, T. J., J. Appl. Phys. 35, 240 (1964).CrossRefGoogle Scholar
47Elliott, R. P., Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).Google Scholar
48Castanet, R., J. Chem. Thermodynamics 11, 787 (1979).CrossRefGoogle Scholar
49Biersach, J.P. and Haggmark, L.J., Nucl. Instrum. Methods 174, 257 (1980); and J.P. Biersach and W. Eckstein, Appl. Phys. A 34, 73 (1984).CrossRefGoogle Scholar