Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T09:29:39.627Z Has data issue: false hasContentIssue false

Room-temperature growth of ultrasmooth AlN epitaxial thin films on sapphire with NiO buffer layer

Published online by Cambridge University Press:  03 March 2011

Atsushi Sasaki
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori, Yokohama 226-8502, Japan
Jin Liu
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori, Yokohama 226-8502, Japan
Wakana Hara
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori, Yokohama 226-8502, Japan
Shusaku Akiba
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori, Yokohama 226-8502, Japan
Keisuke Saito
Affiliation:
Bruker AXS K.K., Kanagawa-ku, Yokohama 221-0022, Japan
Tokuo Yodo
Affiliation:
Electronic Information and Communication Engineering, Osaka Institute of Technology, Ohmiya, Osaka 535-8585, Japan
Mamoru Yoshimoto*
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama 226-8503, Japan
*
a) Address all correspondence to this author. e-mail: m.yoshimoto@msl.titech.ac.jp
Get access

Abstract

Room-temperature epitaxy of AlN thin films on sapphire (0001) substrates was achieved by pulsed laser deposition using an epitaxial NiO ultrathin buffer layer (approximately 6 nm thick). Four-circle x-ray diffraction analysis indicates a double heteroepitaxial structure of AlN (0001)/NiO(111)/sapphire (0001) with the epitaxial relationship of AlN [10-10] ‖ NiO [11-2] ‖ sapphire [11-20]. The surface morphology of room-temperature grown AlN thin films was found to be atomically smooth and nanostepped, reflecting the surface of the ultrasmooth sapphire substrate with 0.2-nm-high steps.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S., Senoh, M., Iwasa, N. andNagahama, S.: High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl. Phys. Lett. 67 1868 (1995).CrossRefGoogle Scholar
2.Nakamura, S.: First laser diodes fabricated from III-V nitride based materials. Mater. Sci. Eng. B 43 258 (1997).CrossRefGoogle Scholar
3.Iriarte, G.F., Engelmark, F. andKatardjiev, I.V.: Reactive sputter deposition of highly oriented AIN films at room temperature. J. Mater. Res. 17 1469 (2002).CrossRefGoogle Scholar
4.Amano, H., Sawasaki, N., Akasaki, I. andToyoda, Y.: Metalorganic vapor-phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48 353 (1986).CrossRefGoogle Scholar
5.Yoshida, S., Misawa, S. andGonda, S.: Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett. 42 427 (1983).CrossRefGoogle Scholar
6.Feiler, R.D, Williams, S., Talin, A.A., Yoon, H. andGoorsky, M.S.: Pulsed laser deposition of epitaxial AlN, GaN, and InN thin films on sapphire 0001. J. Cryst. Growth 171 12 (1997).CrossRefGoogle Scholar
7.Ohta, J., Fujioka, H., Takahashi, H. andOshima, M.: Growth of epitaxial AlN films on (Mn,Zn)Fe2O4 substrates by pulsed laser deposition. Appl. Surf. Sci. 197–198 486 (2002).Google Scholar
8.Lynds, L., Weinberger, B.R., Peterson, G.G. andKrasinski, H.A.: Superconducting thin films of Y-Ba-Cu-O produced by neodymium:yttrium aluminum garnet laser ablation. Appl. Phys. Lett. 52, 320 (1988).CrossRefGoogle Scholar
9.Yoshimoto, M., Shimozono, K., Maeda, T., Ohnishi, T., Kumagai, M., Chikyow, T., Ishiyama, O., Shinohara, M. andKoinuma, H.: Room-temperature epitaxial growth of CeO2 thin films on Si(111) substrates for fabrication of sharp oxide/silicon interface. Jpn. J. Appl. Phys. 32 L688 (1995).CrossRefGoogle Scholar
10.Trtik, V., Sanchez, F., Aguiar, R., Maniette, Y., Ferrater, C. andVarela, M.: Room-temperature epitaxial growth of CeO2(001) films on YSZ buffered Si(001) substrates. Appl. Phys. A Mater. Sci. Proc. 67 455 (1998).Google Scholar
11.Tashiro, J., Sasaki, A., Akiba, S., Satoh, S., Watanabe, T., Funakubo, H. andYoshimoto, M.: Room-temperature epitaxial growth of indium tin oxide thin films on Si substrates with an epitaxial CeO2 ultrathin buffer. Thin Solid Films 415 272 (2002).Google Scholar
12.Ohnishi, T., Yoshimoto, M., Lee, G.H., Maeda, T. andKoinuma, H.: Unit cell layer-by-layer heteroepitaxy of BaO thin films at temperatures as low as 20 °C. J. Vac. Sci. Technol. A 15 2469 (1997).CrossRefGoogle Scholar
13.Ramamoorthy, K., Sanjeeviraja, C., Jayachandran, M., Sankaranarayanan, K., Bhattacharya, P. andKukreja, L.M.: Preparation and characterization of ZnO thin films on InP by laser-molecular beam epitaxy technique for solar cells. J. Cryst. Growth 226 281 (2001).CrossRefGoogle Scholar
14.Tachiki, M., Hosomi, T. andKobayashi, T.: Room-temperature heteroepitaxial growth of NiO thin films using pulsed laser deposition. Jpn. J. Appl. Phys. 39 1817 (2000).CrossRefGoogle Scholar
15.Kakehi, Y., Nakao, S., Satoh, K. andKusaka, T.: Room-temperature epitaxial growth of NiO(1 1 1) thin films by pulsed laser deposition. J. Cryst. Growth 237-239 591 (2002).CrossRefGoogle Scholar
16.Sasaki, A., Isa, H., Liu, J., Akiba, S., Hanada, T. andYoshimoto, M.: Fabrication of micropatterns on sapphire substrates via room-temperature selective homoepitaxial growth induced by electron beam irradiation. Jpn. J. Appl. Phys. 41 6534 (2002).CrossRefGoogle Scholar
17.Kiyomura, T. andGomi, M.: Room-temperature epitaxial growth of Ni-Zn ferrite thin films by pulsed laser deposition in high vacuum. Jpn. J. Appl. Phys. 36 L1000 (1997).CrossRefGoogle Scholar
18.Ohta, J., Fujioka, H., Ito, S. andOshima, M.: Room-temperature epitaxial growth of AlN films. Appl. Phys. Lett. 81 2373 (2002).CrossRefGoogle Scholar
19.Ohta, J., Fujioka, H. andOshima, M.: Room-temperature epitaxial growth of GaN on conductive substrates. Appl. Phys. Lett. 83 3060 (2003).CrossRefGoogle Scholar
20.Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. andSawaki, N.: Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0 < x ≥ 0.4) films grown on sapphire substrate by MOVPE. J. Cryst. Growth 98 209 (1989).Google Scholar
21.Nakamura, S., Senoh, M. andMukai, T.: High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 62 2390 (1993).CrossRefGoogle Scholar
22.Ishida, M., Lee, Y., Higashino, T., Seo, H. andNakamura, T.: Double SOI structures and device applications with heteroepitaxial Al2O3 and Si. Jpn. J. Appl. Phys. 34 831 (1995).CrossRefGoogle Scholar
23.Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. andMiyamoto, A.: Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication. Appl. Phys. Lett. 67 2615 (1995).CrossRefGoogle Scholar
24.Hufner, S., Steinen, P., Sander, I., Neumann, M. andWitzel, S.: Photoemission on NiO. Z. Phys. B 83 185 (1991).CrossRefGoogle Scholar
25.Sakata, O., Yi, M-S., Matsuda, A., Liu, J., Sato, S., Akiba, S., Sasaki, A. andYoshimoto, M.: Structural analysis of NiO ultra-thin films epitaxially grown on ultra-smooth sapphire substrates by synchrotron x-ray diffraction measurements. Appl. Surf. Sci. 221 450 (2004).CrossRefGoogle Scholar
26.Koinuma, H. andYoshimoto, M.: Controlled formation of oxide materials by laser molecular beam epitaxy. Appl. Surf. Sci. 75 308 (1994).CrossRefGoogle Scholar
27.Gupta, A., Braren, B., Kasey, K.G., Hussey, B.W. andKelly, R.: Direct imaging of the fragments produced during excimer laser ablation of YBa2Cu3O7–δ. Appl. Phys. Lett. 59 1302 (1991).CrossRefGoogle Scholar
28.Yim, W.M., Stofko, E.J., Zanzucchi, P.J., Pankove, J.I., Ettenberg, M. andGilbert, S.L.: Epitaxially grown AlN and its optical band gap. J. Appl. Phys. 44 292 (1973).Google Scholar