Skip to main content

Selective area epitaxy of magnesium oxide thin films on gallium nitride surfaces

  • Mark D. Losego (a1), Elizabeth A. Paisley (a2), H. Spalding Craft (a3), Peter G. Lam (a3), Edward Sachet (a3), Seiji Mita (a3), Ramon Collazo (a3), Zlatko Sitar (a3) and Jon-Paul Maria (a3)...

Selective area growth of thin films reduces the number of steps in microfabrication processing and enables novel device structures. Here, we report, for the first time, selective area epitaxy of an oxide material on a GaN surface. Chlorination of the GaN surface via wet chemical processing is found effective to disrupt Mg adsorption and selectively prevent molecular beam epitaxy growth of MgO. MgO films grown on neighboring, nonchlorinated surfaces are epitaxial with a (111) MgO||(0001) GaN crystallographic relationship. Better than 3 μm lateral resolution for the selective area growth of MgO on GaN is demonstrated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Selective area epitaxy of magnesium oxide thin films on gallium nitride surfaces
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Selective area epitaxy of magnesium oxide thin films on gallium nitride surfaces
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Selective area epitaxy of magnesium oxide thin films on gallium nitride surfaces
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Heinecke H., Brauers A., Grafahrend F., Plass C., Putz N., Werner K., Weyers M., Luth H., and Balk P.: Selective growth of GaAs in the MOMBE and MOCVD systems. J. Cryst. Growth 77(1–3), 303 (1986).
2. Fukui T., Ando S., Tokura Y., and Toriyama T.: GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor-deposition. Appl. Phys. Lett. 58(18), 2018 (1991).
3. Zang K.Y. and Chua S.J.: GaN based nanorod light emitting diodes by selective area epitaxy. Phys. Status Solidi C 7(7–8), 2236 (2010).
4. Bjork M.T., Schmid H., Breslin C.M., Gignac L., and Riel H.: InAs nanowire growth on oxide-masked 〈111〉 silicon. J. Cryst. Growth 344(1), 31 (2012).
5. Yamazaki Y., Chang J.H., Cho M.W., Sekiguchi T., and Yao T.: Selective-area growth of ZnSe on patterned GaAs(001) substrates by molecular beam epitaxy. J. Cryst. Growth 214, 202 (2000).
6. Hartmann J.M., Bertin F., Rolland G., Laugler F., and Semeria M.N.: Selective epitaxial growth of Si and SiGe for metal oxide semiconductor transistors. J. Cryst. Growth 259(4), 419 (2003).
7. Levitin G. and Hess D.W.: Surface reactions in microelectronics process technology. In Annual Review of Chemical and Biomolecular Engineering, Vol. 2, Prausnitz J.M. ed.; Annual Reviews: Palo Alto, CA, 2011; p. 299.
8. Azoulay R., Bouadma N., Bouley J.C., and Dugrand L.: Selective MOCVD epitaxy for optoelectronic devices. J. Cryst. Growth 55(1), 229 (1981).
9. Nelson E.C., Dias N.L., Bassett K.P., Dunham S.N., Verma V., Miyake M., Wiltzius P., Rogers J.A., Coleman J.J., Li X.L., and Braun P.V.: Epitaxial growth of three-dimensionally architectured optoelectronic devices. Nat. Mater. 10(9), 676 (2011).
10. Bhat R.: Current status of selective area epitaxy by OMCVD. J. Cryst. Growth 120(1–4), 362 (1992).
11. Boland J.J. and Parsons G.N.: Bond selectivity in silicon film growth. Science 256(5061), 1304 (1992).
12. Yu S., Gulari E., and Kanicki J.: Selective deposition of polycrystalline silicon thin films at low temperature by hot-wire chemical vapor deposition. Appl. Phys. Lett. 68(19), 2681 (1996).
13. Gladfelter W.L.: Selective metallization by chemical-vapor-deposition. Chem. Mater. 5(10), 1372 (1993).
14. Hampdensmith M.J. and Kodas T.T.: Chemical-vapor-deposition of metals 2. Selective CVD of metals. Chem. Vap. Deposition 1(2), 39 (1995).
15. Liang C.H., Chen L.C., Hwang J.S., Chen K.H., Hung Y.T., and Chen Y.F.: Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates. Appl. Phys. Lett. 81(1), 22 (2002).
16. Fan S.S., Chapline M.G., Franklin N.R., Tombler T.W., Cassell A.M., and Dai H.J.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512 (1999).
17. Nishiyama T., Kim E.M., Numata K., and Pak K.: Doping study on maskless selective direct growth of GaAs using low-energy focused ion beam. Jpn. J. Appl. Phys. 43(6A), Part 2, L716 (2004).
18. Allegretti F., Inoue M., and Nishinaga T.: In-situ observation of GaAs selective epitaxy on GaAs (111)B substrates. J. Cryst. Growth 146(1–4), 354 (1995).
19. Suzuki Y., Shimoda M., Okada Y., and Kawabe M.: Formation of quantum dot structures by atomic hydrogen assisted selective area molecular beam epitaxy. Jpn. J. Appl. Phys. 36(11B), Part 2, L1538 (1997).
20. Sugaya T., Okada Y., and Kawabe M.: Selective growth of GaAs by molecular-beam epitaxy. Jpn. J. Appl. Phys. 31(6A), Part 2, L713 (1992).
21. Cho D.H., Hachiro M., Abe Y., and Pak K.: Maskless selective epitaxy of InxGa1−x As using low-energy In0.15Ga0.85-FIB and As-4 molecular beam. J. Cryst. Growth 201, 610 (1999).
22. Nishinaga T. and Bacchin G.: Selective area MBE of GaAs, AlAs and their alloys by periodic supply epitaxy. Thin Solid Films 367(1–2), 6 (2000).
23. Lee W.T., Tsai D.S., Chen Y.M., Huang Y.S., and Chung W.H.: Area-selectively sputtering the RuO2 nanorods array. Appl. Surf. Sci. 254(21), 6915 (2008).
24. Karthik J., Damodaran A.R., and Martin L.W.: Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24(12), 1610 (2012).
25. Paisley E.A., Losego M.D., Gaddy B.E., Tweedie J.S., Collazo R., Sitar Z., Irving D.L., and Maria J.P.: Surfactant-enabled epitaxy through control of growth mode with chemical boundary conditions. Nat. Commun. 2, 461 (2011).
26. Paisley E.A., Gaddy B.E., LeBeau J.M., Shelton C.T., Biegalski M.D., Christen H.M., Losego M.D., Mita S., Collazo R., Sitar Z., Irving D.L., and Maria J-P.: Smooth cubic commensurate oxides on gallium nitride. J. Appl. Phys. 115(6), 064101 (2014).
27. Craft H.S., Collazo R., Losego M.D., Mita S., Sitar Z., and Maria J.P.: Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy. J. Appl. Phys. 102(7), 074104 (2007).
28. Craft H.S., Ihlefeld J.F., Losego M.D., Collazo R., Sitar Z., and Maria J.P.: MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy. Appl. Phys. Lett. 88(21), (2006).
29. Losego M.D., Craft H.S., Paisley E.A., Mita S., Collazo R., Sitar Z., and Maria J-P.: Critical examination of growth rate for magnesium oxide (MgO) thin films deposited by molecular beam epitaxy with a molecular oxygen flux. J. Mater. Res. 25(4), 670 (2010).
30. Losego M.D., Mita S., Collazo R., Sitar Z., and Maria J-P.: Epitaxial calcium oxide films deposited on gallium nitride surfaces. J. Vac. Sci. Technol., B 25(3), 1029 (2007).
31. Losego M.D., Mita S., Collazo R., Sitar Z., and Maria J-P.: Epitaxial growth of the metastable phase ytterbium monoxide on gallium nitride surfaces. J. Cryst. Growth 310(1), 51 (2008).
32. Chen J.J., Hlad M., Gerger A.P., Gila B.P., Ren F., Abernathy C.R., and Pearton S.J.: Band offsets in the Mg0.5Ca0.5O/GaN heterostructure system. J. Electron. Mater. 36(4), 368 (2007).
33. Gillespie J.K., Fitch R.C., Sewell J., Dettmer R., Via G.D., Crespo A., Jenkins T.J., Luo B., Mehandru R., Kim J., Ren F., Gila B.P., Onstine A.H., Abernathy C.R., and Pearton S.J.: Effects of Sc2O3 and MgO passivation layers on the output power of AlGaN/GaN HEMTs. IEEE Electron Device Lett. 23(9), 505 (2002).
34. Irokawa Y., Nakano Y., Ishiko M., Kachi T., Kim J., Ren F., Gila B.P., Onstine A.H., Abernathy C.R., Pearton S.J., Pan C.C., Chen G.T., and Chyi J.I.: MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett. 84(15), 2919 (2004).
35. Ihlefeld J.F., Tian W., Liu Z.K., Doolittle W.A., Bernhagen M., Reiche P., Uecker R., Ramesh R., and Schlom D.G.: Adsorption-controlled growth of BiFeO3 by MBE and Integration with wide band gap semiconductors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(8), 1528 (2009).
36. Wu H., Yuan J., Peng T., Pan Y., Han T., Shen K., Zhao B.R., and Liu C.: Control of the epitaxial orientation and reduction of the interface leakage current in YMnO3/GaN heterostructures. J. Phys. D: Appl. Phys. 42(18), 185302 (2009).
37. Posadas A., Yau J.B., Ahn C.H., Han J., Gariglio S., Johnston K., Rabe K.M., and Neaton J.B.: Epitaxial growth of multiferroic YMnO3 on GaN. Appl. Phys. Lett. 87(17), 171915 (2005).
38. Ihlefeld J.F., Brumbach M., and Atcitty S.: Band offsets of La2O3 on (0001) GaN grown by reactive molecular-beam epitaxy. Appl. Phys. Lett. 102(16), 162903 (2013).
39. Yifeng W., Jacob-Mitos M., Moore M.L., and Heikman S.: A 97.8% efficient GaN HEMT boost converter with 300-W output power at 1 MHz. IEEE Electron Device Lett. 29(8), 824 (2008).
40. Uemoto Y., Hikita M., Ueno H., Matsuo H., Ishida H., Yanagihara M., Ueda T., Tanaka T., and Ueda D.: Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54(12), 3393 (2007).
41. Doolittle W.A., Namkoong G., Carver A.G., and Brown A.S.: Challenges and potential payoff for crystalline oxides in wide bandgap semiconductor technology. Solid-State Electron. 47(12), 2143 (2003).
42. Collazo R., Mita S., Schlesser R., and Sitar Z.: Polarity control of GaN thin films grown by metalorganic vapor phase epitaxy. Phys. Status Solidi C 2, 2117 (2005).
43. Mita S., Collazo R., Rice A., Dalmau R.F., and Sitar Z.: Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition. J. Appl. Phys. 104(1), 013521 (2008).
44. Nam O.H., Bremser M.D., Zheleva T.S., and Davis R.F.: Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71(18), 2638 (1997).
45. Geneste G., Morillo J., and Finocchi F.: Ab initio study of Mg adatom and MgO molecule adsorption and diffusion on the MgO(001) surface. Appl. Surf. Sci. 188(1–2), 122 (2002).
46. Geneste G., Morillo J., and Finocchi F.: Adsorption and diffusion of Mg, O, and O2 on the MgO(001) flat surface. J. Chem. Phys. 122(17), 174707 (2005).
47. Lee K.N., Donovan S.M., Gila B., Overberg M., Mackenzie J.D., Abernathy C.R., and Wilson R.G.: Surface chemical treatment for the cleaning of AlN and GaN surfaces. J. Electrochem. Soc. 147(8), 3087 (2000).
48. Diale M., Auret F.D., van der Berg N.G., Odendaal R.Q., and Roos W.D.: Analysis of GaN cleaning procedures. Appl. Surf. Sci. 246(1–3), 279 (2005).
49. King S.W., Barnak J.P., Bremser M.D., Tracy K.M., Ronning C., Davis R.F., and Nemanich R.J.: Cleaning of AlN and GaN surfaces. J. Appl. Phys. 84(9), 5248 (1998).
50. Tracy K.M., Mecouch W.J., Davis R.F., and Nemanich R.J.: Preparation and characterization of atomically clean, stoichiometric surfaces of n- and p-type GaN(0001). J. Appl. Phys. 94(5), 3163 (2003).
51. Smith A.R., Feenstra R.M., Greve D.W., Neugebauer J., and Northrup J.E.: Reconstructions of the ${\rm{GaN}}\left( {000\bar 1} \right)$ surface. Phys. Rev. Lett. 79(20), 3934 (1997).
52. Zywietz T.K., Neugebauer J., and Scheffler M.: The adsorption of oxygen at GaN surfaces. Appl. Phys. Lett. 74(12), 1695 (1999).
53. Barin I.: Thermochemical Data of Pure Substances (VCH, New York, NY, 1989).
54. Koranyi T.I., Magni E., and Somorjai G.A.: Surface science approach to the preparation and characterization of model Ziegler–Natta heterogeneous polymerization catalysts. Top. Catal. 7(1–4), 179 (1999).
55. Egelhoff W.F., Chen P.J., Powell C.J., Stiles M.D., McMichael R.D., Judy J.H., Takano K., and Berkowitz A.E.: Oxygen as a surfactant in the growth of giant magnetoresistance spin valves. J. Appl. Phys. 82(12), 6142 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 9
Total number of PDF views: 172 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.