Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-03T15:31:03.825Z Has data issue: false hasContentIssue false

Selective nucleation of silicon clusters in CVD

Published online by Cambridge University Press:  31 January 2011

Frank G. Shi
Affiliation:
Department of Chemical Engineering, 210-41, California Institute of Technology, Pasadena, California 91125
John H. Seinfeld
Affiliation:
Department of Chemical Engineering, 210-41, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

A nucleation model is developed that includes chemical etching of atoms as an additional loss process besides thermal dissociation that competes with the process of atom addition in forming a cluster. The model has the proper qualitative features to describe observations of the evolution of cluster formation on amorphous silicon substrates in the low pressure CVD of a mixture of SiH2Cl2/HCl/H2.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jagannadham, K. and Naragyan, J., J. Elect. Mater. 20, 767 (1991).CrossRefGoogle Scholar
2.Maris, H. J. and Xiong, Q., Phys. Rev. Lett. 63, 1078 (1989).CrossRefGoogle Scholar
3.Tanner, L. E. and Wuttig, M., Mater. Sci. Eng. A127, 137 (1990).CrossRefGoogle Scholar
4.Yacout, A. M. and Stubbins, J. F., Rad. Eff, Def. in Solids 117, 363 (1991); J. L. Katz and H. Wiedersich, J. Chem. Phys. 55, 1414 (1971).CrossRefGoogle Scholar
5.Heist, R. E. and Reiss, H., J. Chem. Phys. 59, 1025 (1973).CrossRefGoogle Scholar
6.Katz, J. L. and Donohue, M. D., J. Coll. Interf. Sci. 85, 267 (1982).Google Scholar
7.Kumomi, H., Yonehara, T., Nishigaki, Y., and Sato, N., Appl. Surf. Sci. 41/42, 638 (1989).CrossRefGoogle Scholar
8.Kumomi, H. and Yonehara, T., Appl. Phys. Lett. 54, 2648 (1989).CrossRefGoogle Scholar
9.Goulding, M. R., de, J.Phys. C2, 745 (1991); J. W. Osenbach, D. G. Schimmel, A. Feygenson, J. J. Bastek, J. C. C. Tsai, H. C. Praefcke, and E. W. Bonato, J. Mater. Res. 6, 2318 (1991); J-O. Carlsson, Crit. Rev. Solid State Mater. Sci. 16, 161 (1990) and references therein.Google Scholar
10.Venables, J. A., Philos. Mag. 27, 697 (1973).CrossRefGoogle Scholar
11.Lewis, B. and Anderson, J. C., Nucleation and Growth of Thin Films (Academic Press, New York, 1978).Google Scholar
12.Claassen, W. A. P. and Bloem, J., J. Electrochem. Soc. 128, 1353 (1981); M. Miyamara, Y. Sakisaka, M. Nishijma, and M. Onchi, Surf. Sci. 72, 243 (1978).CrossRefGoogle Scholar
13.Westervelt, R. M., Phys. Status Solidi (b) 74, 727 (1976).CrossRefGoogle Scholar
14.Claassen, W. A. P. and Bloem, J., J. Electrochem. Soc. 127, 194 (1980).CrossRefGoogle Scholar
15.Yew, T. R. and Reif, R., J. Appl. Phys. 65, 2500 (1989).CrossRefGoogle Scholar
16. Personal communication with Dr. T. Yonehara.Google Scholar
17.Yaws, C. L., Dickens, L. L., Lutwack, R., and Hsu, G., Solid State Technol. 24, 87 (1981).Google Scholar