Skip to main content Accessibility help

Silicon carbide quantum dots for bioimaging

  • David Beke (a1), Zsolt Szekrényes (a2), Denes Pálfi (a3), Gergely Róna (a4), István Balogh (a5), Pal Andor Maák (a6), Gergely Katona (a7), Zsolt Czigány (a8), Katalin Kamarás (a9), Balazs Rózsa (a10), Laszlo Buday (a11), Beata Vértessy (a11) and Adam Gali (a12)...

Luminescent nanocrystals or quantum dots (QDs) have great potential for bioanalysis as well as optoelectronics. Here we report an effective and inexpensive fabrication method of silicon carbide quantum dots (SiC QDs), with diameter below 8 nm, based on electroless wet chemical etching. Our samples show strong violet-blue emission in the 410–450 nm region depending on the solvents used and particle size. The cytotoxic properties of the SiC QDs based on alamarBlueTM assay cells were studied. The presence of the QDs dots does not affect cell growth in a wide concentration range. Two-photon excitation showed significant response from SiC nanocrystals that were injected into hippocampal CA1 pyramidal cells.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Murcia, M.J. and Naumann, C.A.: Biofunctionalization of fluorescent nanoparticles, in Nanotechnologies for Life Sciences, Vol. 1, edited by Kumar, S.S.R. (Wiley-VCH, Weinheim, 2005), pp. 140.
2.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4, 435, (2005).
3.Kim, S., Fisher, B., Eisler, H.J., and Bawendi, M.: Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466, (2003).
4.Cao, Y.W., Aksenton, J., Soloviev, V., and Banin, U.: Colloidal synthesis and properties of InAs/InP and InAs/CdSe core/shell, nanocrystals. in Semiconductor Quantum Dots, edited by Moss, S.C., Ila, D., Lee, H.W.H., and Norris, D.J. (Mater. Res. Soc. Symp. Proc. 571, Warrendale, PA, 2000) p. 75.
5.Hardman, R.: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165, (2006).
6.Hua, F., Erogbogbo, F., Yong, K.T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T.: Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. ACS Nano 2, 873, (2008).
7.Kanemitsu, Y., Shimizu, N., Komoda, T., Hemment, P.L.F., and Sealy, B.J.: Photoluminescent spectrum and dynamics of Si+-ion-implanted and thermally annealed SiO2 glasses. Phys. Rev. B 54, R14329 (1996).
8.Hadjisawas, G. and Kelires, P.: Structure and energetics of Si nanocrystals embedded in a-SiO2. Phys. Rev. Lett. 93, 226104 (2004).
9.Wu, X., Fan, J., Qiu, T., Yang, X., Siu, G., and Chu, P.K.: Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 94, 6 (2005).
10.Fan, J.Y., Wu, X.L., Li, H.X., Liu, H.W., Siu, G.G., and Chu, P.K.: Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl. Phys. Lett. 88, 041909 (2006).
11.Botsoa, J., Bluet, J.M., Lysenko, V., Marty, O., Barbier, D., and Guillot, G.: Photoluminescence of 6H–SiC nanostructures fabricated by electrochemical etching. J. Appl. Phys. 102, 083526 (2007).
12.Makkai, Z., Pécz, B., Bársony, I., Vida, G., Pongrácz, A., Josepovits, K.V., and Deák, P.: Isolated SiC nanocrystals in SiO2. Appl. Phys. Lett. 86, 253109 (2005).
13.Coletti, C., Jaroszeski, M.J., Pallaoro, A., Hoff, A.M., Iannotta, S., and Saddow, S.E.: Biocompatibility and wettability of crystalline SiC and Si surfaces. In IEEE EMBS Proceedings 29th Annual International Conference. 58495852 (EMBS, Lyon, France, 2007).
14.Raya, C.T., Maldonado, D.H., Rico, J.R., Gañan, C.G., de Arellano-Lopez, A.R., and Fernandez, J.M.: Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants. J. Mater. Res. 23, 32473254 (2008).
15.Botsoa, J., Lysenko, V., Géloën, A., Marty, O., Bluet, J.M., and Guillot, G.: Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 92, 173902 (2008).
16.Serdiuk, T., Lysenko, V., Skryshevsky, V., and Géloën, A.: Vapor phase-mediated cellular uptake of sub-5 nm nanoparticles. Nanoscale Res. Lett. 7, 212 (2012).
17.Beke, D., Szekrényes, Zs., Balogh, I., Veres, M., Fazakas, É., Varga, L.K., Kamarás, K., Czigány, Zs., and Gali, A.: Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Appl. Phys. Lett. 99, 213108 (2011).
18.Zhu, J., Liu, Z., Wu, X.L., Xu, L.L., Zhang, W.C., and Chu, P.K.: Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method. Nanotechnology 18, 365603 (2007).
19.Katona, G., Szalay, G., Maák, P., Kaszás, A., Veress, M., Hillier, D., Chiovini, B., Vizi, E.S., Roska, B., and Rózsa, B.: Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201 (2012).
20.Maravall, M., Mainen, Z.F., Sabatini, B.L., and Svoboda, K.: Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 26552667 (2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed